ColdQuanta, Inc., AKA ColdQuanta

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 176 pour ColdQuanta, Inc., AKA ColdQuanta Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 161
        Marque 15
Juridiction
        États-Unis 141
        International 35
Date
Nouveautés (dernières 4 semaines) 2
2026 janvier (MACJ) 2
2025 octobre 1
2025 septembre 2
2026 (AACJ) 2
Voir plus
Classe IPC
G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique 26
G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit 20
G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels 16
G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer 15
G01R 29/08 - Mesure des caractéristiques du champ électromagnétique 10
Voir plus
Classe NICE
09 - Appareils et instruments scientifiques et électriques 9
42 - Services scientifiques, technologiques et industriels, recherche et conception 7
14 - Métaux précieux et leurs alliages; bijouterie; horlogerie 4
35 - Publicité; Affaires commerciales 2
Statut
En Instance 42
Enregistré / En vigueur 134
  1     2        Prochaine page

1.

MINIATURE ATOMIC SPECTROSCOPY REFERENCE CELL SYSTEM

      
Numéro d'application 19321601
Statut En instance
Date de dépôt 2025-09-08
Date de la première publication 2026-01-01
Propriétaire
  • ColdQuanta, Inc. (USA)
  • COLDQUANTA UK LIMITED (Royaume‑Uni)
Inventeur(s)
  • Ballance, Timothy George
  • Salim, Evan
  • Bowman, David

Abrégé

A spectroscopy system is described. The spectroscopy system includes a cell, a photodiode, and mirrors. The cell has walls forming a chamber therein. The chamber is configured to receive laser signal(s) and retaining a vapor therein. The vapor fluoresces in response to the laser signal(s). The mirrors are configured to direct fluorescent light from the vapor toward the photodiode. In some embodiments, the spectroscopy system is incorporated with a photonic integrated circuit.

Classes IPC  ?

2.

ULTRA-HIGH-VACUUM CELL WITH INTEGRATED META-OPTICS

      
Numéro d'application 19318770
Statut En instance
Date de dépôt 2025-09-04
Date de la première publication 2026-01-01
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Oh, Taek Il
  • Hughes, Steven Michael

Abrégé

Metamaterial optics are integrated with vacuum-boundary walls of ultra-high-vacuum (UHV) cells to manipulate light in a manner analogous to various bulk optical elements including lenses, mirrors, beam splitters, polarizers, waveplate, wave guides, frequency modulators, and amplitude modulators. For example, UHV cells can have metasurface lenses formed on interior and/or exterior surfaces on one or more of their vacuum-boundary walls. Each metasurface lens can include a plurality of mesas with the same height and various cross-sectional dimensions. The uses of metasurface lenses allows through-going laser beams to be expanded, collimated or focused without using bulky refractive optics. Each metasurface lens can be formed on a cell wall using photolithographic or other techniques.

Classes IPC  ?

  • G02B 1/00 - Éléments optiques caractérisés par la substance dont ils sont faitsRevêtements optiques pour éléments optiques
  • G02B 3/00 - Lentilles simples ou composées
  • G02B 5/18 - Grilles de diffraction
  • G02B 7/00 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques
  • G21K 1/06 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer utilisant la diffraction, la réfraction ou la réflexion, p. ex. monochromateurs

3.

LOW-LATENCY RADIO FREQUENCY SIGNAL CLASSIFICATION FOR ONLINE RF SENSING

      
Numéro d'application 19184133
Statut En instance
Date de dépôt 2025-04-21
Date de la première publication 2025-10-23
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Gokhale, Pranav
  • Carnahan, Caitlin Elizabeth

Abrégé

Examples relate to the field of radio frequency (RF) signal processing such as classifying RF signals with low latency. The method involves receiving portions of an RF signal, transforming these portions into a time-resolved frequency representation using a continuous wavelet transform, and processing this representation with a recurrent neural network. The neural network modifies a neural network state incrementally to generate a classification output, which may include modulation classification, signal-to-noise ratio (SNR) classification, or jamming detection. The system achieves sub-millisecond inference latency through techniques such as model quantization and batch size optimization. Principal uses include real-time RF signal analysis and jamming detection, with applications in communication systems and environmental monitoring. The RF signal may be received from a quantum RF sensor based on Rydberg atoms, enabling broad frequency range detection.

Classes IPC  ?

  • H04K 3/00 - Brouillage de la communicationContre-mesures

4.

RADIO-FREQUENCY RECEIVER PUMPED TO HIGH-AZIMUTHAL RYDBERG STATES

      
Numéro d'application 19068998
Statut En instance
Date de dépôt 2025-03-03
Date de la première publication 2025-09-11
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Caliga, Seth Charles
  • Fan, Haoquan
  • Bottomley, Eric Magnuson

Abrégé

A radio-frequency receiver achieves high sensitivity by pumping atoms to high-azimuthal (≥3) Rydberg states. A vapor cell contains quantum particles (e.g., cesium atoms). A laser system provides probe, dressing, and coupling beams to pump the quantum particles to a first Rydberg state having a high-azimuthal quantum number ≥3. A local oscillator drives an electric field in the vapor cell at a local oscillator frequency, which is imposed on a distribution of quantum particles between the first Rydberg state and a second Rydberg state. An incident RF signal field interferes with the local oscillator field, imposing an oscillation in the distribution at a beat or difference frequency and, consequently, on the intensity of the probe beam. The beat frequency component of the intensity of the probe beam is detected, and the detection signal is demodulated to extract information originally in the RF signal.

Classes IPC  ?

  • H04B 10/70 - Communications quantiques photoniques
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit

5.

HOLDOVER OF ATOMIC CLOCKS USING PREDICTIVE TECHNIQUES

      
Numéro d'application 19073441
Statut En instance
Date de dépôt 2025-03-07
Date de la première publication 2025-09-11
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Fasano, Robert James
  • Tomesh, Teague
  • Fazzio, Ronald Shane

Abrégé

An apparatus for maintaining accurate timekeeping in an atomic clock during holdover is presented. The apparatus comprises data acquisition circuitry configured to store historical clock data; and receive environment data. The apparatus comprises processing circuitry configured with a predictive algorithm, the predictive algorithm configured to analyze a combination of historical clock data, environment data, and real-time clock data; and estimate a future drift in a frequency of the atomic clock at a future time point based on analysis of the combination of historical clock data, environment data, and real-time clock data. The apparatus further comprises control circuitry configured to adjust the frequency of the atomic clock based on the estimated future drift of the frequency of the atomic clock.

Classes IPC  ?

  • G04F 5/14 - Appareils pour la production d'intervalles de temps prédéterminés, utilisés comme étalons utilisant des horloges atomiques

6.

DETERMINING TRANSIENT STABILITY OF A POWER GRID USING A QUANTUM COMPUTING SYSTEM

      
Numéro d'application 19015223
Statut En instance
Date de dépôt 2025-01-09
Date de la première publication 2025-07-17
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Jones, Eric Brandon
  • Gokhale, Pranav

Abrégé

A method for determining transient stability of a power grid using qubits of a quantum computing system comprises: receiving input parameters associated with a portion of the power grid; preparing an initial quantum state based on the input parameters; determining a plurality of time evolution steps, where each time evolution step is associated with a different respective iteration of a plurality of iterations; applying, for each iteration, a first set of quantum gate operations (QGOs) to the qubits, wherein the first set of QGOs produces a quantum state based on a first evolution of the initial quantum state or a quantum state produced by a previous iteration, and a second set of QGOs to the qubits, wherein the second set of QGOs produces a quantum state based on a second evolution of the quantum state produced by the first set of QGOs of a respective iteration.

Classes IPC  ?

  • G01R 19/25 - Dispositions pour procéder aux mesures de courant ou de tension ou pour en indiquer l'existence ou le signe utilisant une méthode de mesure numérique
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit

7.

TIMING SIGNALS COMPARISON FOR INTERFERENCE DETECTION

      
Numéro d'application 18974012
Statut En instance
Date de dépôt 2024-12-09
Date de la première publication 2025-06-12
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Olson, Judith
  • Fazzio, Ronald Shane
  • Fasano, Robert James

Abrégé

A system includes an atomic clock providing a local reference clock signal, an external clock interface receiving an external clock signal, and a comparator comparing the local and external clock signals. In response, the comparator generates a comparison output signal. An interference detection system receives this signal and determines if the external clock signal contains an interference component. The system then outputs an alert signal to indicate the presence of interference.

Classes IPC  ?

  • G01S 19/21 - Problèmes liés aux interférences
  • H03L 7/26 - Commande automatique de fréquence ou de phaseSynchronisation utilisant comme référence de fréquence les niveaux d'énergie de molécules, d'atomes ou de particules subatomiques

8.

SMOOTHING PERIODIC DATA CHANNEL ACCESS

      
Numéro d'application 18948731
Statut En instance
Date de dépôt 2024-11-15
Date de la première publication 2025-05-22
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Lewis, Timothy Burton
  • Mason, Jonathan James

Abrégé

In one aspect, a system comprises: a memory configured to store a plurality of data units; a plurality of data sources, where each data source is configured to provide a respective data unit; and a processor configured to: determine a plurality of periods where each period is associated with a respective event and each event is associated with a different respective data source, determine a plurality of adjusted periods, where each period is associated with a respective adjusted period, determine a respective order for each adjusted period, determine a number of adjusted periods associated with each order, determine a number of time slots for a lowest order of adjusted periods based on the number of adjusted periods within each of the orders, and determine a start time for each event based on the order of the event and the number of time slots for the lowest order of adjusted periods.

Classes IPC  ?

  • G06F 9/54 - Communication interprogramme
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption

9.

Quantum cell manufacture using multi-finger flexure jig

      
Numéro d'application 18118042
Numéro de brevet 12291482
Statut Délivré - en vigueur
Date de dépôt 2023-03-06
Date de la première publication 2025-05-06
Date d'octroi 2025-05-06
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Hughes, Steven Michael
  • Caliga, Seth Charles

Abrégé

In the manufacture of a quantum cell, multi-finger jigs are used to hold precision masks flat during a photolithographic procedure and or to apply force uniformly over a bonding area during an anodic or other direct bonding procedure. The fingers of a jig are flexible that they can bend sufficiently independently of each other that one finger can accommodate a non-uniformity of a surface to be contacted by the jig so that other fingers remain in contact with other areas of the surface. The fingers can be defined by slits orthogonal to a perimeter of the jig.

Classes IPC  ?

  • C03C 27/06 - Liaison verre-verre par des procédés autres que la fusion
  • B32B 37/00 - Procédés ou dispositifs pour la stratification, p. ex. par polymérisation ou par liaison à l'aide d'ultrasons
  • B32B 37/10 - Procédés ou dispositifs pour la stratification, p. ex. par polymérisation ou par liaison à l'aide d'ultrasons caractérisés par la technique de pressage, p. ex. faisant usage de l'action directe du vide ou d'un fluide sous pression

10.

Conformal coatings for quantum vacuum applications

      
Numéro d'application 18212445
Numéro de brevet 12293850
Statut Délivré - en vigueur
Date de dépôt 2023-06-21
Date de la première publication 2025-05-06
Date d'octroi 2025-05-06
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Hughes, Steven Michael
  • Cahall, Calvin
  • Perez, Maximillian Adriano

Abrégé

A system, method, or device for providing a vacuum cell comprising a conformal coating is disclosed. The system includes (i) a vacuum cell having at least one internal vacuum chamber, the vacuum cell being formed of at least one piece, and (ii) a conformal coating on the at least one internal vacuum chamber or surface of the vacuum cell, the conformal coating having fewer seams than a number of the at least one piece.

Classes IPC  ?

  • G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron

11.

Magnetic shielding for ion pumps

      
Numéro d'application 18137983
Numéro de brevet 12295132
Statut Délivré - en vigueur
Date de dépôt 2023-04-21
Date de la première publication 2025-05-06
Date d'octroi 2025-05-06
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Hughes, Steven Michael
  • Salim, Evan
  • Leon, Hugo
  • Sheridan, Iii, Christopher Robert
  • Roof, Stetson Joe

Abrégé

A system including a vacuum cell, an ion pump, and a multi-layer magnetic shield is described. The vacuum cell includes a magnetic field-sensitive section, a pump section, and a channel section providing a vacuum conductance path between the magnetic field-sensitive section and the pump section. The ion pump is in the pump section. The multi-layer magnetic shield surrounds at least a portion of the ion pump. The multi-layer magnetic shield has a first layer and a second layer. The first layer is between the second layer and the ion pump. The first layer has a moderate relative magnetic permeability and a high saturation magnetization. The second layer has a high relative magnetic permeability and a moderate saturation magnetization.

Classes IPC  ?

  • H05K 9/00 - Blindage d'appareils ou de composants contre les champs électriques ou magnétiques
  • H01J 5/02 - EnceintesRécipientsBlindages associésVannes à vide

12.

ARTIFICIAL NEURAL NETWORK PROCESSING TO REDUCE PARAMETER SCALING

      
Numéro d'application 18920295
Statut En instance
Date de dépôt 2024-10-18
Date de la première publication 2025-04-24
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Gokhale, Pranav
  • Tomesh, Teague

Abrégé

An artificial neural network (ANN) receives a sequence of input data tokens. The ANN has a hidden state memory of size N and a set of weights having a size that scales on or below an order of N. The ANN processes each token in the sequence of input data tokens by performing, based on each token, a logical operation on the hidden state memory to generate an updated hidden state memory. Processing the sequence of input data tokens comprises performing a number of compute operations that scales on or below an order of N{circumflex over ( )}1.5. The ANN obtains, from the updated hidden state memory after processing each token, a final hidden state memory. The ANN generates an inference result based on the final hidden state memory.

Classes IPC  ?

  • G06N 3/043 - Architecture, p. ex. topologie d'interconnexion fondée sur la logique floue, l’appartenance floue ou l’inférence floue, p. ex. systèmes d’inférence neuro-floue adaptatifs [ANFIS]
  • G06N 3/0464 - Réseaux convolutifs [CNN, ConvNet]
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit

13.

OPTICAL ENSEMBLING SUCH AS FOR ATOMIC CLOCKS

      
Numéro d'application 18913915
Statut En instance
Date de dépôt 2024-10-11
Date de la première publication 2025-04-17
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Fasano, Robert James
  • Fazzio, Ronald Shane
  • Olson, Judith
  • Cahall, Calvin
  • Perez, Maximillian Adriano
  • Pendergast, Karl
  • Baltz, Nathan

Abrégé

An optical atomic clock can include a group of optical frequency references. A system for improving frequency stability in the clock output signal can use an optical combination of the group of optical frequency references. The system can include a first optical frequency reference comprising an output configured to generate a first optical signal; a second optical frequency reference comprising an output configured to generate a second optical signal; an optical frequency comparator configured to generate a first electrical feedback signal based on an optical combination of the first optical signal and the second optical signal; and an optical frequency comb, wherein the first optical frequency reference is configured to receive the first electrical feedback signal; and modify the first optical signal based on the first electrical feedback signal, wherein the optical frequency comb is configured to output a radio-frequency electrical signal based on the modified first optical signal.

Classes IPC  ?

  • H04L 7/00 - Dispositions pour synchroniser le récepteur avec l'émetteur

14.

DETERMINING ELECTROMAGNETIC WAVE CONTROL FOR MATTER-WAVE INTERFEROMETRY

      
Numéro d'application 18822945
Statut En instance
Date de dépôt 2024-09-03
Date de la première publication 2025-03-13
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Seifert, Lennart Maximilian
  • Perlin, Michael Alexandrovich
  • Colussi, Victor

Abrégé

During one or more active periods of time over which at least one of an amplitude, frequency, or phase of one or more optical wave(s) are modified, the optical wave(s) overlap with and interact with a gaseous cloud of IAMs and transfer portions of the among different distributions of momentum states. Control signals for controlling aspects of the optical wave(s) are determined based at least in part on (1) a constraint determined based at least in part on a set of optical wave parameters, and a set of quantum state parameters, where two or more of the quantum state parameters do not satisfy the constraint, and/or (2) a partial derivative of one or more quantum states associated with the IAMs, where the partial derivative is with respect to an optimization parameter determined based at least in part on the one or more optical waves or the estimation parameter.

Classes IPC  ?

  • G01B 9/02001 - Interféromètres caractérisés par la commande ou la génération des propriétés intrinsèques du rayonnement
  • G01B 9/02015 - Interféromètres caractérisés par la configuration du parcours du faisceau
  • G01B 9/02055 - Réduction ou prévention d’erreursTestÉtalonnage

15.

WIDEBAND TUNABLE RYDBERG MICROWAVE DETECTOR

      
Numéro d'application 18812324
Statut En instance
Date de dépôt 2024-08-22
Date de la première publication 2025-02-13
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Anderson, Dana Zachary
  • Fan, Haoquan
  • Wang, Ying-Ju
  • Bottomley, Eric Magnuson
  • Hughes, Steven Michael

Abrégé

An electromagnetic field detector including a vapor cell, an excitation system, and a frequency tuner is described. The vapor cell has a plurality of quantum particles therein. The excitation system excites the quantum particles to a first Rydberg state. The first Rydberg state has a transition to a second Rydberg state at a first frequency. The frequency tuner generates a tunable field in a portion of the vapor cell. The tunable field shifts the first Rydberg state and/or the second Rydberg state such that the transition to the second Rydberg state is at a second frequency different from the first frequency. The detection frequency range for the electromagnetic field detector is continuous and includes the first frequency and the second frequency.

Classes IPC  ?

  • G01R 29/08 - Mesure des caractéristiques du champ électromagnétique

16.

SQALE

      
Numéro de série 99039136
Statut En instance
Date de dépôt 2025-02-12
Propriétaire ColdQuanta, Inc. ()
Classes de Nice  ? 09 - Appareils et instruments scientifiques et électriques

Produits et services

Quantum computer hardware, namely, quantum processing units; Quantum computers; Computer hardware for quantum computing; Computer hardware with preinstalled operating system software for quantum computing; Devices for processing and storing quantum information, namely, quantum computer hardware; Scientific apparatus and instruments for quantum computation and data processing, namely, quantum processing units and quantum computers

17.

SQALE

      
Numéro de série 99975061
Statut En instance
Date de dépôt 2025-02-12
Propriétaire ColdQuanta, Inc. ()
Classes de Nice  ? 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Research and development services for neutral-atom quantum computing; Design and testing of neutral-atom quantum computers and related hardware; Consulting services in the field of neutral-atom quantum computing; Cloud-based neutral-atom quantum computing services, namely, providing temporary use of on-line non-downloadable cloud computing software for compiling, optimizing, and benchmarking circuits for quantum computers.

18.

QUANTUM CONSTRAINED HAMILTONIAN OPTIMIZATION

      
Numéro d'application 18593276
Statut En instance
Date de dépôt 2024-03-01
Date de la première publication 2025-01-16
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Hall, Benjamin Prescott
  • Perlin, Michael A.

Abrégé

A device includes applying coupling and transformation operations to quantum states according to a Hamiltonian specification. Information is received at a digital computer based in part on measurements of the quantum states. The digital computer provides information for preparing quantum states associated with quantum processing elements based in part on the information. A control module applies coupling and transformation operations based on interaction with the digital computer for processing the constrained optimization problem. The processing includes preparing quantum states associated with quantum processing elements characterized by a summation of a constraint Hamiltonian and an objective Hamiltonian. The processing further includes operating the control module to evolve a time-dependent Hamiltonian by forming a sum of a first term having the constraint Hamiltonian and a second term. The second term includes a product that is initially equal to the objective Hamiltonian and is evolved into a negative of the objective Hamiltonian.

Classes IPC  ?

  • G06F 17/11 - Opérations mathématiques complexes pour la résolution d'équations

19.

MANAGING PROCESSING OF QUANTUM CIRCUITS

      
Numéro d'application 18418848
Statut En instance
Date de dépôt 2024-01-22
Date de la première publication 2025-01-16
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Smith, Kaitlin Nicole
  • Chong, Frederic Tsyh-An
  • Gokhale, Pranav
  • Perlin, Michael Alexandrovich

Abrégé

A method comprises determining a first and second portion of a quantum circuit specification based at least in part on two or more estimated gate simulation times associated with simulating two or more quantum gate operations; generating a first set of output quantum states (OQSs) by simulating the first portion using a classical processor; determining a first set of measurement results associated with the first set of OQSs; generating a second set of OQSs by simulating or executing the second portion; determining a second set of measurement results associated with the second set of OQSs; and determining a result based at least in part on the first set of measurement results and the second set of measurement results; where the first set of OQSs and the second set of OQSs do not depend on each other.

Classes IPC  ?

  • G06N 10/80 - Programmation quantique, p. ex. interfaces, langages ou boîtes à outils de développement logiciel pour la création ou la manipulation de programmes capables de fonctionner sur des ordinateurs quantiquesPlate-formes pour la simulation ou l’accès aux ordinateurs quantiques, p. ex. informatique quantique en nuage

20.

GRADIENT MATTER-WAVE GRADIOMETRY

      
Numéro d'application 18377727
Statut En instance
Date de dépôt 2023-10-06
Date de la première publication 2024-11-07
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Anderson, Dana Zachary

Abrégé

Each atom in a population of atoms can be characterized by a probability density distribution (PDD). Using a shaken-lattice technique, each PDD is split into a pair of sub-PDDs. The sub-PDDs of a pair are propagated along different paths to a common endpoint of the paths, resulting in a matter-wave interference pattern that encodes a net phase between the paths, e.g., due to differential effects associated with a gravity gradient. The matter-wave interference pattern can be measured to yield a respective measurement for each atom. The measurements can be aggregated to yield a result distribution that can serve as a classical domain estimate of the quantum-domain matter-wave interference pattern, and thus of the gravity gradient. Other embodiments can determine gradients for other types of fields.

Classes IPC  ?

  • G01V 7/04 - Moyens électriques, photo-électriques ou magnétiques d'indication ou d'enregistrement

21.

QUBIT ARRAY REPARATION

      
Numéro d'application 18197269
Statut En instance
Date de dépôt 2023-05-15
Date de la première publication 2024-11-07
Propriétaire
  • ColdQuanta, Inc. (USA)
  • The Regents of the University of Colorado, a body corporate (USA)
Inventeur(s)
  • Anderson, Dana Zachary
  • Dinardo, Brad Anthony

Abrégé

A qubit array reparation system includes a reservoir of ultra-cold particle, a detector that determines whether or not qubit sites of a qubit array include respective qubit particles, and a transport system for transporting an ultra-cold particle to a first qubit array site that has been determined by the probe system to not include a qubit particle so that the ultra-cold particle can serve as a qubit particle for the first qubit array site. A qubit array reparation process includes maintaining a reservoir of ultra-cold particles, determining whether or not qubit-array sites contain respective qubit particles, each qubit particle having a respective superposition state, and, in response to a determination that a first qubit site does not contain a respective qubit particle, transporting an ultracold particle to the first qubit site to serve as a qubit particle contained by the first qubit site.

Classes IPC  ?

  • H01L 29/66 - Types de dispositifs semi-conducteurs
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • H01L 29/15 - Structures avec une variation de potentiel périodique ou quasi périodique, p.ex. puits quantiques multiples, superréseaux
  • H01L 29/775 - Transistors à effet de champ avec un canal à gaz de porteurs de charge à une dimension, p.ex. FET à fil quantique
  • H10N 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe

22.

Sense-plus-compute quantum-state carriers

      
Numéro d'application 18205434
Numéro de brevet 12271782
Statut Délivré - en vigueur
Date de dépôt 2023-06-02
Date de la première publication 2024-11-07
Date d'octroi 2025-04-08
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Perlin, Michael A.
  • Gokhale, Pranav
  • Chong, Frederic T.
  • Saffman, Mark
  • Anderson, Dana Zachary

Abrégé

Sense+compute (S+C) quantum-state carriers (QSCs), e.g., rubidium atoms, can be used provide more scalable quantum sensor systems. Multiple S+C QSCs can capture sensor data. The sensor data can then be transformed in the quantum domain according to a quantum tomographic protocol. The transformed data can be measured to provide a respective classical domain measurement. The sensing, transformation, and measurement can be repeated to provide a set of measurements (corresponding to different transformations) that can be combined according to the quantum tomography protocol to generate a model of the original quantum state. Estimation error associated with the model can be scaled down at a rate corresponding more closely to increases in the number N of QSCs than √{square root over (N)}, even in the presence of noise.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/70 - Correction, détection ou prévention d’erreur quantique, p. ex. codes de surface ou distillation d’état magique

23.

Radio-frequency receiver pumped to high-azimuthal Rydberg states

      
Numéro d'application 18378591
Numéro de brevet 12273149
Statut Délivré - en vigueur
Date de dépôt 2023-10-10
Date de la première publication 2024-08-29
Date d'octroi 2025-04-08
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Caliga, Seth Charles
  • Fan, Haoquan
  • Bottomley, Eric Magnuson

Abrégé

≥3. A local oscillator drives an electric field in the vapor cell at a local oscillator frequency, which is imposed on a distribution of quantum particles between the first Rydberg state and a second Rydberg state. An incident RF signal field interferes with the local oscillator field, imposing an oscillation in the distribution at a beat or difference frequency and, consequently, on the intensity of the probe beam. The beat frequency component of the intensity of the probe beam is detected, and the detection signal is demodulated to extract information originally in the RF signal.

Classes IPC  ?

  • H04B 10/00 - Systèmes de transmission utilisant des ondes électromagnétiques autres que les ondes hertziennes, p. ex. les infrarouges, la lumière visible ou ultraviolette, ou utilisant des radiations corpusculaires, p. ex. les communications quantiques
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • H04B 10/70 - Communications quantiques photoniques
  • H04J 14/00 - Systèmes multiplex optiques

24.

SENSE-PLUS-COMPUTE QUANTUM-STATE CARRIERS

      
Numéro d'application US2023024367
Numéro de publication 2024/172831
Statut Délivré - en vigueur
Date de dépôt 2023-06-02
Date de publication 2024-08-22
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Perlin, Michael, A.
  • Gokhale, Pranav
  • Chong, Frederic, T.
  • Saffman, Mark
  • Anderson, Dana, Zachary

Abrégé

Sense+ compute (S+C) quantum-state carriers (QSCs), e.g., rubidium atoms, can be used provide more scalable quantum sensor systems. Multiple S+C QSCs can capture sensor data. The sensor data can then be transformed in the quantum domain according to a quantum tomographic protocol. The transformed data can be measured to provide a respective classical domain measurement. The sensing, transformation, and measurement can be repeated to provide a set of measurements (corresponding to different transformations) that can be combined according to the quantum tomography protocol to generate a model of the original quantum state. Estimation error associated with the model can be scaled down at a rate corresponding more closely to increases in the number N of QSCs than (I), even in the presence of noise.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06N 10/70 - Correction, détection ou prévention d’erreur quantique, p. ex. codes de surface ou distillation d’état magique
  • G06F 11/14 - Détection ou correction d'erreur dans les données par redondance dans les opérations, p. ex. en utilisant différentes séquences d'opérations aboutissant au même résultat
  • G06N 5/01 - Techniques de recherche dynamiqueHeuristiquesArbres dynamiquesSéparation et évaluation
  • G06N 7/01 - Modèles graphiques probabilistes, p. ex. réseaux probabilistes

25.

RYDBERG-MOLECULE-BASED MICROWAVE DIRECTION FINDING

      
Numéro d'application 18636077
Statut En instance
Date de dépôt 2024-04-15
Date de la première publication 2024-08-15
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Anderson, Dana Zachary
  • Fan, Haoquan
  • Wang, Ying-Ju
  • Bottomley, Eric Magnuson

Abrégé

A probe laser beam causes molecules to transition from a ground state to an excited state. A control laser beam causes molecules in the excited state to transition to a laser-induced Rydberg state. Microwave lenses convert a microwave wavefront into respective microwave beams. The microwave beams are counter-propagated through molecules so as to create a microwave interference pattern of alternating maxima and minima. The microwave interference pattern is imposed on the probe beam as a probe transmission pattern. The propagation direction of the microwave wavefront can be determined from the translational position of the probe transmission pattern; the intensity of the microwave wavefront can be determined by the intensity difference between the minima and maxima of the probe transmission pattern.

Classes IPC  ?

  • G01S 3/46 - Systèmes pour déterminer une direction ou une déviation par rapport à une direction prédéterminée en utilisant des antennes espacées et en mesurant la différence de phase ou de temps entre les signaux venant de ces antennes, c.-à-d. systèmes à différence de parcours

26.

MANAGING PROCESSING OF QUANTUM CIRCUITS

      
Numéro d'application US2024012358
Numéro de publication 2024/167659
Statut Délivré - en vigueur
Date de dépôt 2024-01-22
Date de publication 2024-08-15
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Smith, Kaitlin Nicole
  • Chong, Frederic Tsyh-An
  • Gokhale, Pranav
  • Perlin, Michael Alexandrovich

Abrégé

A method comprises determining a first and second portion of a quantum circuit specification based at least in part on two or more estimated gate simulation times associated with simulating two or more quantum gate operations; generating a first set of output quantum states (OQSs) by simulating the first portion using a classical processor; determining a first set of measurement results associated with the first set of OQSs; generating a second set of OQSs by simulating or executing the second portion; determining a second set of measurement results associated with the second set of OQSs; and determining a result based at least in part on the first set of measurement results and the second set of measurement results; where the first set of OQSs and the second set of OQSs do not depend on each other.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06F 30/337 - Optimisation de la conception
  • H04B 10/70 - Communications quantiques photoniques

27.

Deployable Rydberg RF sensor

      
Numéro d'application 18202063
Numéro de brevet 12032010
Statut Délivré - en vigueur
Date de dépôt 2023-05-25
Date de la première publication 2024-07-09
Date d'octroi 2024-07-09
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Caliga, Seth Charles

Abrégé

An electrometer is disclosed. The electrometer includes a housing, a vapor cell, a micro-optical system, an electric field generator, and a control electronic subsystem. The vapor cell has a top and a bottom and includes a vapor of quantum particles. The micro-optical system is configured to route laser fields through the vapor cell in a direction transverse to the top and the bottom. The electric field generator is configured to provide an electric field in the vapor cell. The housing includes a surface adapted to mate to a portion of a fuselage surrounding a hole.

Classes IPC  ?

  • H04B 10/00 - Systèmes de transmission utilisant des ondes électromagnétiques autres que les ondes hertziennes, p. ex. les infrarouges, la lumière visible ou ultraviolette, ou utilisant des radiations corpusculaires, p. ex. les communications quantiques
  • G01R 29/08 - Mesure des caractéristiques du champ électromagnétique
  • G01R 29/12 - Mesure du champ électrostatique
  • H04J 14/00 - Systèmes multiplex optiques

28.

QUANTUM-HARDENED POWER GRID

      
Numéro d'application 18391190
Statut En instance
Date de dépôt 2023-12-20
Date de la première publication 2024-06-27
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Gokhale, Pranav
  • Perlin, Michael A.
  • Goiporia, Palash
  • Chong, Frederic T.
  • Clark, William

Abrégé

A quantum-hardened power grid includes grid nodes (e.g., power plants, renewable energy sources and substations) and transmission lines connecting the grid nodes. The grid nodes include stable quantum clocks that permit the power grid to continue operation in the event of downtime for a GPS or other external synchronization reference. Operation sans an external reference can be extended by synchronizing atomic clocks across grid nodes using a quantum network. The atomic clocks can be used with quantum sensors and quantum computers to provide grid state estimates, e.g., using quantum tomography “at the edge”. In addition, these quantum devices can be used to compute responses to grid faults and cyberattacks.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels

29.

LOW NOISE HIGH FREQUENCY COIL DRIVER

      
Numéro d'application US2023019486
Numéro de publication 2024/118112
Statut Délivré - en vigueur
Date de dépôt 2023-04-21
Date de publication 2024-06-06
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Jones, Ryan, Anthony
  • Mesko, Tyler, Anthony
  • Cohen, Jonathan, Philip
  • Majdeteimouri, Farhad

Abrégé

A system including a magnetic coil and a coil driver is described. The magnetic coil has a parasitic capacitance. The coil driver is coupled with the magnetic coil. The coil driver includes a pulse generator and a switching module coupled with the pulse generator. The pulse generator provides a pulse train. The switching module receives the pulse train and provides a switched driving signal to the magnetic coil. The switched driving signal has a frequency not less than a parasitic capacitance frequency.

Classes IPC  ?

  • G05F 7/00 - Régulation des grandeurs magnétiques
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G21K 1/093 - Déviation, concentration ou focalisation du faisceau par des moyens électriques ou magnétiques par des moyens magnétiques

30.

MANAGING PROCESSING OF STATES OF SEQUENCES OF DATA

      
Numéro d'application US2023081267
Numéro de publication 2024/118555
Statut Délivré - en vigueur
Date de dépôt 2023-11-28
Date de publication 2024-06-06
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Gokhale, Pranav
  • Anschuetz, Eric
  • Chong, Frederic Tsyh-An

Abrégé

A system comprises a first computing device (CD) comprising processors in communication with a first plurality of quantum storage elements (QSEs); a second CD comprising processors in communication with a non-volatile memory, a second plurality of QSEs, and control circuitry configured to apply quantum gate operations to the second plurality of the QSEs, where the second CD is configured to: read a sequence of data (SOD) from the non-volatile memory, and use the control circuitry to generate quantum states stored in the second plurality of QSEs based at least in part on at least one of (1) a hypergraph-based representation associated with the SOD or (2) random circuit sampling and the SOD, where the SOD provides randomness for the random circuit sampling; and a quantum communication channel between the first CD and the second CD configured to transmit the quantum states from the second CD to the first CD.

Classes IPC  ?

  • G06F 16/901 - IndexationStructures de données à cet effetStructures de stockage
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06T 11/20 - Traçage à partir d'éléments de base, p. ex. de lignes ou de cercles
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 21/57 - Certification ou préservation de plates-formes informatiques fiables, p. ex. démarrages ou arrêts sécurisés, suivis de version, contrôles de logiciel système, mises à jour sécurisées ou évaluation de vulnérabilité

31.

MANAGING PROCESSING OF STATES OF SEQUENCES OF DATA

      
Numéro d'application 18520952
Statut En instance
Date de dépôt 2023-11-28
Date de la première publication 2024-05-30
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Gokhale, Pranav
  • Anschuetz, Eric
  • Chong, Frederic Tsyh-An

Abrégé

A system comprises a first computing device (CD) comprising processors in communication with a first plurality of quantum storage elements (QSEs); a second CD comprising processors in communication with a non-volatile memory, a second plurality of QSEs, and control circuitry configured to apply quantum gate operations to the second plurality of the QSEs, where the second CD is configured to: read a sequence of data (SOD) from the non-volatile memory, and use the control circuitry to generate quantum states stored in the second plurality of QSEs based at least in part on at least one of (1) a hypergraph-based representation associated with the SOD or (2) random circuit sampling and the SOD, where the SOD provides randomness for the random circuit sampling; and a quantum communication channel between the first CD and the second CD configured to transmit the quantum states from the second CD to the first CD.

Classes IPC  ?

  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels

32.

MULTI-QUANTUM-REFERENCE LASER FREQUENCY STABILIZATION

      
Numéro d'application US2023019314
Numéro de publication 2024/112362
Statut Délivré - en vigueur
Date de dépôt 2023-04-20
Date de publication 2024-05-30
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Olson, Judith
  • Ycas, Gabriel

Abrégé

A multi-quantum-reference (MQR) laser frequency stabilization system includes a laser system, an MQR system, and a controller. The laser system provides an output beam with an output frequency, and plural feedback beams with respective feedback frequencies. The feedback beams are directed to the MQR system which includes plural references, each including a respective population of quantum particles, e.g., rubidium 87 atoms, with respective resonant frequencies for respective quantum transitions. The degree to which the feedback frequencies match or deviate from the resonance frequencies can be tracked using fluorescence or other electro-magnetic radiation output from the references. The controller can stabilize the laser system output frequency based on plural reference outputs to achieve both short-term and long-term stability, e.g., in the context of an atomic clock.

Classes IPC  ?

  • H01S 5/0687 - Stabilisation de la fréquence du laser
  • H01S 5/34 - Structure ou forme de la région activeMatériaux pour la région active comprenant des structures à puits quantiques ou à superréseaux, p. ex. lasers à puits quantique unique [SQW], lasers à plusieurs puits quantiques [MQW] ou lasers à hétérostructure de confinement séparée ayant un indice progressif [GRINSCH]
  • H01S 3/13 - Stabilisation de paramètres de sortie de laser, p. ex. fréquence ou amplitude

33.

Atomic clock with enhanced oscillator regulation

      
Numéro d'application 18215798
Numéro de brevet 12298721
Statut Délivré - en vigueur
Date de dépôt 2023-06-28
Date de la première publication 2024-05-16
Date d'octroi 2025-05-13
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Salim, Evan
  • Olson, Judith
  • Kortyna, Andrew
  • Genkina, Dina
  • Cruz, Flavio

Abrégé

A rubidium optical atomic clock uses a modulated 778 nanometer (nm) probe beam and its reflection to excite rubidium 87 atoms, some of which emit 758.8 nm fluorescence as they decay back to the ground state. A spectral filter rejects scatter of the 778 nm probe beams while transmitting the 775.8 nm fluorescence so that the latter can be detected with a high signal-to-noise ratio. Since the spectral filter is only acceptably effective at angles of incidence less than 8° from the perpendicular, the atoms are localized by a magneto-optical trap so that most of the atoms lie within a conical volume defined by the 8° angle so that the resulting fluorescence detection signal has a high signal-to-noise ratio. The fluorescence detection signal can be demodulated to provide an error signal from which desired adjustments to the oscillator frequency can be calculated.

Classes IPC  ?

  • G04F 5/14 - Appareils pour la production d'intervalles de temps prédéterminés, utilisés comme étalons utilisant des horloges atomiques
  • G01N 21/64 - FluorescencePhosphorescence
  • H03L 7/26 - Commande automatique de fréquence ou de phaseSynchronisation utilisant comme référence de fréquence les niveaux d'énergie de molécules, d'atomes ou de particules subatomiques

34.

Flexible atomic clock

      
Numéro d'application 18386232
Numéro de brevet 12273118
Statut Délivré - en vigueur
Date de dépôt 2023-11-01
Date de la première publication 2024-05-02
Date d'octroi 2025-04-08
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Olson, Judith

Abrégé

A method for controlling an atomic clock is described. The method includes receiving, at a processor, a request including an operational mode of multiple operational modes for the atomic clock. The atomic clock includes a local oscillator, a vapor cell, a detector, and a local oscillator controller. The vapor cell includes atoms and receives from the local oscillator a signal having a frequency. The signal causes transitions of the atoms between atomic energy states. The detector detects the transitions and provides to the local oscillator controller an error signal based on the transitions. The error signal indicates a difference between the frequency and a target frequency. The local oscillator controller controls the local oscillator based on the error signal. The processor determines, based on the operational mode, values for control parameters for the atomic clock. The atomic clock is controlled using the values of the parameters.

Classes IPC  ?

  • H03L 7/26 - Commande automatique de fréquence ou de phaseSynchronisation utilisant comme référence de fréquence les niveaux d'énergie de molécules, d'atomes ou de particules subatomiques
  • G04F 5/14 - Appareils pour la production d'intervalles de temps prédéterminés, utilisés comme étalons utilisant des horloges atomiques

35.

GRADIENT MATTER-WAVE GRADIOMETRY

      
Numéro d'application US2023034704
Numéro de publication 2024/081173
Statut Délivré - en vigueur
Date de dépôt 2023-10-06
Date de publication 2024-04-18
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s) Anderson, Dana, Zachary

Abrégé

Each atom in a population of atoms can be characterized by a probability density distribution (FDD). Using a shaken-lattice technique, each FDD is split into a pair of sub-PDDs. The sub-PDDs of a pair are propagated along different paths to a common endpoint of the paths, resulting in a matter-wave interference pattern that encodes a net phase between the paths, e.g., due to differential effects associated with a gravity gradient. The matter-wave interference pattern can be measured to yield a respective measurement for each atom. The measurements can be aggregated to yield a result distribution that can serve as a classical domain estimate of the quantum-domain matter-wave interference pattern, and thus of the gravity gradient. Other embodiments can determine gradients for other types of fields.

Classes IPC  ?

  • G01V 7/00 - Mesure de champs ou d'ondes de gravitationProspection ou détection gravimétrique
  • G01B 9/02 - Interféromètres

36.

BEAT-NOTE STABILIZED LASER WITH RECEIVED-POWER TRACKER

      
Numéro d'application 18370336
Statut En instance
Date de dépôt 2023-09-19
Date de la première publication 2024-04-04
Propriétaire
  • ColdQuanta, Inc. (USA)
  • COLDQUANTA UK LIMITED (Royaume‑Uni)
Inventeur(s) Ballance, Timothy George

Abrégé

A laser system provides a system output signal and a monitor signal with a predetermined phase and/or frequency relationship to the system output signal. The monitor signal is combined with a reference frequency to yield an optical beat-note. A telecom optical transceiver (e.g., an SFP or an SFP+ module) is used to convert the optical beat-note to an analog electrical beat-note. The transceiver can extract received-power information from the analog electrical beat-note and digitize the analog electrical beat-note to yield a digital electrical beat-note. The digital electrical beat-note can be used to stabilize the laser and the system output signal by phase or offset locking.

Classes IPC  ?

37.

SHAKEN LATTICE AS A SERVICE

      
Numéro d'application 18523786
Statut En instance
Date de dépôt 2023-11-29
Date de la première publication 2024-04-04
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Anderson, Dana Zachary
  • Caliga, Seth Charles
  • Majdeteimouri, Farhad

Abrégé

A shaken-lattice station and a cloud-based server cooperate to provide shaken lattices as a service (SLaaS). The shaken-lattice station serves as a system for implementing “recipes” for creating and using shaking functions to be applied to light used to trap quantum particles. The cloud-based server acts as an interface between the shaken-lattice station (or stations) and authorized users of account holders. To this end the server hosts an account manager and a session manager. The account manager manages accounts and associated account-based and user-specific permissions that define what actions any given authorized user for an account may perform with respect to a shaken-lattice station. The session manager controls (e.g., in real-time) interactions between a user and a shaken-lattice station, some interactions allowing a user to select a recipe based on results returned earlier in the same session.

Classes IPC  ?

  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard

38.

COMPILING QUANTUM COMPUTING PROGRAM SPECIFICATIONS BASED ON QUANTUM OPERATIONS

      
Numéro d'application 18199075
Statut En instance
Date de dépôt 2023-05-18
Date de la première publication 2024-03-21
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Perlin, Michael Alexandrovich

Abrégé

Compiling a program specification that comprises at least one quantum circuit associated with both a set of quantum operations and a first schedule for the set of quantum operations includes assigning each quantum operation in the set to a first passed set, a first caught set, or a first blocked set. The first blocked set includes a first quantum operation that addresses one or more qubits that are addressed by at least one quantum operation in the first caught set. A first passed set ordering is determined. A first caught set ordering is determined. Determining a second schedule for the set of quantum operations includes assigning the quantum operations in the first caught set to be performed after the quantum operations in the first passed set, and assigning the quantum operations in the first blocked set to be performed after the quantum operations in the first caught set.

Classes IPC  ?

39.

INFLEQTION

      
Numéro d'application 1779222
Statut Enregistrée
Date de dépôt 2023-11-29
Date d'enregistrement 2023-11-29
Propriétaire ColdQuanta, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 14 - Métaux précieux et leurs alliages; bijouterie; horlogerie
  • 35 - Publicité; Affaires commerciales
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Scientific apparatus and instruments for use in quantum research, namely, of lasers for industrial use and computers; downloadable cloud-computing software for use in data collection, data analytics, network maintenance, and computing integrity in the field of quantum research; computer hardware for use in quantum research. Quantum clocks. Business consulting services through the use of quantum research; business consulting, and development services in the fields of commerce, and data management through the use of quantum computing. Providing temporary use of on-line non-downloadable cloud-based software for use in quantum research; scientific research, consulting, and development services in the fields of technology, and data mining, processing, and storage through the use of quantum computing; quantum research as a service (QRaaS), namely, use of quantum devices and sensors and quantum computing for provision of research.

40.

PULSED-LASER MODIFICATION OF QUANTUM-PARTICLE CELLS

      
Numéro d'application 18240312
Statut En instance
Date de dépôt 2023-08-30
Date de la première publication 2024-02-22
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Hughes, Steven Michael

Abrégé

A pulsed-laser applies short (e.g., less than 10 pico-seconds) pulses to modify quantum particle (e.g., alkali-metal and alkaline-earth-metal atoms) ultra-high vacuum (UHV) cells to bond, ablate, and/or chemically modify vacuum-facing surfaces of the cell. The pulses are generated outside the cell and are transmitted through a vacuum-boundary wall. In one example, one vacuum-boundary wall is first contact bonded to other vacuum boundary walls at a relatively low temperature (below 200° C.), sufficient to form a temporary hermetic seal. Pulsed laser bonding is used to reinforce the contact bonds, correcting defects and generally increasing the robustness of the seal. The pulses provide high peak power to ensure strong bonds, but low total heat so as to avoid heat damage to nearby cell components and to limit quantum-particle sorbtion to and into cell walls.

Classes IPC  ?

  • H01L 29/66 - Types de dispositifs semi-conducteurs
  • H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives

41.

SQYWIRE

      
Numéro d'application 1774311
Statut Enregistrée
Date de dépôt 2024-01-12
Date d'enregistrement 2024-01-12
Propriétaire COLDQUANTA, INC. (USA)
Classes de Nice  ? 09 - Appareils et instruments scientifiques et électriques

Produits et services

Receivers of electronic signals; radio-frequency receivers.

42.

Microwave sensor using Autler-Townes splitting

      
Numéro d'application 18116698
Numéro de brevet 12105130
Statut Délivré - en vigueur
Date de dépôt 2023-03-02
Date de la première publication 2024-01-11
Date d'octroi 2024-10-01
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Salim, Evan
  • Anderson, Dana Zachary
  • Denney, Jayson
  • Majdeteimouri, Farhad

Abrégé

A microwave sensor determines an electric-field strength of a microwave field populated by quantum particles in an ultra-high vacuum (UHV) cell. A probe laser beam and a coupling laser beam are directed into the UHV cell so that they are generally orthogonal to each other and intersect to define a “Rydberg” intersection, so-called as the quantum particles within the Rydberg intersection transition to a pair of Rydberg states. The frequency of the probe laser beam is swept so that a frequency spectrum of the probe laser beam can be captured. The frequency spectrum is analyzed to determine a frequency difference between Autler-Townes peaks. The electric-field strength of the microwave field within the Rydberg intersection is then determined based on this frequency difference.

Classes IPC  ?

  • G01R 29/08 - Mesure des caractéristiques du champ électromagnétique
  • G01R 33/60 - Dispositions ou appareils pour la mesure des grandeurs magnétiques faisant intervenir la résonance magnétique utilisant la résonance paramagnétique électronique

43.

ATOMIC TARGETS FOR MINIATURE ION TRAP SYSTEMS

      
Numéro d'application US2023024251
Numéro de publication 2024/006025
Statut Délivré - en vigueur
Date de dépôt 2023-06-02
Date de publication 2024-01-04
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Cahall, Clinton
  • Leon, Hugo
  • Hale, James S.

Abrégé

A system, method, or device for providing an atomic source. The system includes a vacuum cell, an atomic source selected from a thin film atomic source residing on a conductive substrate and a sintered titanate atomic source, and an activation system configured to eject atoms from the thin film atomic source.

Classes IPC  ?

  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels

44.

Multi-channel quantum-sensing radiofrequency reception

      
Numéro d'application 17990357
Numéro de brevet 12235304
Statut Délivré - en vigueur
Date de dépôt 2022-11-18
Date de la première publication 2024-01-04
Date d'octroi 2025-02-25
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Verploegh, Shane A.
  • Bottomley, Eric Magnuson

Abrégé

87Ru atoms therealong to a Rydberg state. Each channel can be read out by tracking absorption for each of the plural probe beams of the multi-channel system.

Classes IPC  ?

  • G01R 29/08 - Mesure des caractéristiques du champ électromagnétique

45.

Quantum-state readout using stimulated emissions

      
Numéro d'application 18200531
Numéro de brevet 12411388
Statut Délivré - en vigueur
Date de dépôt 2023-05-22
Date de la première publication 2023-12-28
Date d'octroi 2025-09-09
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Radnaev, Alexander Georgiyevich

Abrégé

Quantum-state readout for an atom is performed using stimulated emission, e.g., by illuminating the atoms with electromagnetic radiation (EMR) with wavelengths selected to stimulate photon emission from the atom. Such an emission can be stimulated using four-wave mixing, in this case, three illumination wavelengths are mixed to stimulate the emissions wavelength. The illumination wavelengths are detuned from nearby resonant wavelengths to avoid capture by an atom orbital, which would lead to spontaneous rather than stimulated emission. The stimulated emissions are directional facilitating capture of a strong signal. The illumination wavelengths can be selected to be in different directions from the emissions wavelength to minimize noise in the emissions detection. The net result is a high-signal-to-noise ratio detection signal and quantum-state readout.

Classes IPC  ?

  • G02F 3/00 - Éléments optiques logiquesDispositifs bistables optiques
  • G02F 3/02 - Dispositifs bistables optiques
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit

46.

Quantum mechanics as a service

      
Numéro d'application 18116280
Numéro de brevet 11995514
Statut Délivré - en vigueur
Date de dépôt 2023-03-01
Date de la première publication 2023-12-21
Date d'octroi 2024-05-28
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Anderson, Dana Zachary
  • Caliga, Seth Charles
  • Majdeteimouri, Farhad

Abrégé

A quantum-mechanics station (Ψ-station) and a cloud-based server cooperate to provide quantum mechanics as a service (ΨaaS) including real-time, exclusive, interactive sessions. The Ψ-station serves as a system for implementing “recipes” for producing, manipulating, and/or using quantum-state carriers, e.g., rubidium 87 atoms. The cloud-based server acts as an interface between the station (or stations) and authorized users of account holders. To this end, the server hosts an account manager and a session manager. The account manager manages accounts and associated account-based and user-specific permissions that define what actions any given authorized user for an account may perform with respect to a Ψ-station. The session manager controls (e.g., in real-time) interactions between a user and a Ψ-station, some interactions allowing a user to select a recipe based on wavefunction characterizations returned earlier in the same session.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06F 21/31 - Authentification de l’utilisateur
  • G09B 23/20 - Modèles à usage scientifique, médical ou mathématique, p. ex. dispositif en vraie grandeur pour la démonstration pour la physique pour la physique ou la technologie nucléaire
  • G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
  • H04L 67/146 - Marqueurs pour l'identification sans ambiguïté d'une session particulière, p. ex. mouchard de session ou encodage d'URL
  • H04L 67/306 - Profils des utilisateurs

47.

Radio-frequency receiver pumped to high-azimuthal rydberg states

      
Numéro d'application 17940954
Numéro de brevet 11843420
Statut Délivré - en vigueur
Date de dépôt 2022-09-08
Date de la première publication 2023-12-12
Date d'octroi 2023-12-12
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Caliga, Seth Charles
  • Fan, Haoquan
  • Bottomley, Eric Magnuson

Abrégé

≥3. A local oscillator drives an electric field in the vapor cell at a local oscillator frequency, which is imposed on a distribution of quantum particles between the first Rydberg state and a second Rydberg state. An incident RF signal field interferes with the local oscillator field, imposing an oscillation in the distribution at a beat or difference frequency and, consequently, on the intensity of the probe beam. The beat frequency component of the intensity of the probe beam is detected, and the detection signal is demodulated to extract information originally in the RF signal.

Classes IPC  ?

  • H04B 10/00 - Systèmes de transmission utilisant des ondes électromagnétiques autres que les ondes hertziennes, p. ex. les infrarouges, la lumière visible ou ultraviolette, ou utilisant des radiations corpusculaires, p. ex. les communications quantiques
  • H04B 10/70 - Communications quantiques photoniques
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • H04J 14/00 - Systèmes multiplex optiques

48.

QUANTUM REINFORCEMENT LEARNING FOR TARGET QUANTUM SYSTEM CONTROL

      
Numéro d'application US2023023880
Numéro de publication 2023/235320
Statut Délivré - en vigueur
Date de dépôt 2023-05-30
Date de publication 2023-12-07
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Jones, Eric, Brandon
  • Anderson, Dana, Zachary

Abrégé

A quantum sensor including a training agent and a target quantum system is described. The target quantum system includes quantum state carriers that are capable of being mutually entangled. The training agent includes a training quantum system. The target quantum system receives a control input. An output in response to the control input is obtained from the target quantum system. The training agent evaluates the output and determines a subsequent control input for the target quantum system.

Classes IPC  ?

  • G05B 19/05 - Automates à logique programmables, p. ex. simulant les interconnexions logiques de signaux d'après des diagrammes en échelle ou des organigrammes
  • H04B 10/07 - Dispositions pour la surveillance ou le test de systèmes de transmissionDispositions pour la mesure des défauts de systèmes de transmission
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

49.

COMPILING QUANTUM COMPUTING PROGRAM SPECIFICATIONS BASED ON QUANTUM OPERATIONS

      
Numéro d'application US2023022706
Numéro de publication 2023/235159
Statut Délivré - en vigueur
Date de dépôt 2023-05-18
Date de publication 2023-12-07
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s) Perlin, Michael Alexandrovich

Abrégé

Compiling a program specification that comprises at least one quantum circuit associated with both a set of quantum operations and a first schedule for the set of quantum operations includes assigning each quantum operation in the set to a first passed set, a first caught set, or a first blocked set. The first blocked set includes a first quantum operation that addresses one or more qubits that are addressed by at least one quantum operation in the first caught set. A first passed set ordering is determined. A first caught set ordering is determined. Determining a second schedule for the set of quantum operations includes assigning the quantum operations in the first caught set to be performed after the quantum operations in the first passed set, and assigning the quantum operations in the first blocked set to be performed after the quantum operations in the first caught set.

Classes IPC  ?

  • G06N 10/80 - Programmation quantique, p. ex. interfaces, langages ou boîtes à outils de développement logiciel pour la création ou la manipulation de programmes capables de fonctionner sur des ordinateurs quantiquesPlate-formes pour la simulation ou l’accès aux ordinateurs quantiques, p. ex. informatique quantique en nuage
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels

50.

LOW NOISE HIGH FREQUENCY COIL DRIVER

      
Numéro d'application 18137991
Statut En instance
Date de dépôt 2023-04-21
Date de la première publication 2023-11-30
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Jones, Ryan Anthony
  • Mesko, Tyler Anthony
  • Cohen, Jonathan Philip
  • Majdeteimouri, Farhad

Abrégé

A system including a magnetic coil and a coil driver is described. The magnetic coil has a parasitic capacitance. The coil driver is coupled with the magnetic coil. The coil driver includes a pulse generator and a switching module coupled with the pulse generator. The pulse generator provides a pulse train. The switching module receives the pulse train and provides a switched driving signal to the magnetic coil. The switched driving signal has a frequency not less than a parasitic capacitance frequency.

Classes IPC  ?

  • H01F 7/06 - Électro-aimantsActionneurs comportant des électro-aimants

51.

QUANTUM REINFORCEMENT LEARNING FOR TARGET QUANTUM SYSTEM CONTROL

      
Numéro d'application 18203481
Statut En instance
Date de dépôt 2023-05-30
Date de la première publication 2023-11-30
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Jones, Eric Brandon
  • Anderson, Dana Zachary

Abrégé

A quantum sensor including a training agent and a target quantum system is described. The target quantum system includes quantum state carriers that are capable of being mutually entangled. The training agent includes a training quantum system. The target quantum system receives a control input. An output in response to the control input is obtained from the target quantum system. The training agent evaluates the output and determines a subsequent control input for the target quantum system.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 3/092 - Apprentissage par renforcement

52.

Custom optically active quantum-particle cell manufacture

      
Numéro d'application 17874149
Numéro de brevet 12043543
Statut Délivré - en vigueur
Date de dépôt 2022-07-26
Date de la première publication 2023-11-16
Date d'octroi 2024-07-23
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Hughes, Steven Michael

Abrégé

A process for manufacturing custom optically active quantum-particle cells includes forming a pre-customization assembly and then, in response to receipt of specifications for quantum-particle cells, performing a customization subprocess on the pre-customization assembly to yield custom quantum-particle cells, e.g., vapor cells, vacuum cells, micro-channel cells containing alkali metal or alkaline-earth metal ions or neutral atoms. The customization can include forming metasurface structures on cell walls, e.g., to serve as anti-reflection coatings, lenses, etc., and introducing quantum particles (e.g., alkali metal atoms). A cover can be bonded to hermetically seal the assembly, which can then be diced to yield plural separated custom optically active quantum-particle cells.

Classes IPC  ?

  • B82B 3/00 - Fabrication ou traitement des nanostructures par manipulation d’atomes ou de molécules, ou d’ensembles limités d’atomes ou de molécules un à un comme des unités individuelles
  • B82Y 30/00 - Nanotechnologie pour matériaux ou science des surfaces, p. ex. nanocomposites
  • B82Y 40/00 - Fabrication ou traitement des nanostructures
  • G02B 1/00 - Éléments optiques caractérisés par la substance dont ils sont faitsRevêtements optiques pour éléments optiques

53.

TIQKER

      
Numéro d'application 1759789
Statut Enregistrée
Date de dépôt 2023-06-12
Date d'enregistrement 2023-06-12
Propriétaire ColdQuanta, Inc. (USA)
Classes de Nice  ? 14 - Métaux précieux et leurs alliages; bijouterie; horlogerie

Produits et services

Precision frequency reference and clock products in the nature of optical or microwave frequency clocks with quantum transitions in atomic references for the purposes of providing the stability for national standards, global navigation satellite systems, financial and other transaction time stamping, data and communication network synchronization, assured positions systems, and metrology.

54.

Multi-quantum-reference laser frequency stabilization

      
Numéro d'application 18137385
Numéro de brevet 11916350
Statut Délivré - en vigueur
Date de dépôt 2023-04-20
Date de la première publication 2023-10-26
Date d'octroi 2024-02-27
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Olson, Judith
  • Ycas, Gabriel

Abrégé

A multi-quantum-reference (MQR) laser frequency stabilization system includes a laser system, an MQR system, and a controller. The laser system provides an output beam with an output frequency, and plural feedback beams with respective feedback frequencies. The feedback beams are directed to the MQR system which includes plural references, each including a respective population of quantum particles, e.g., rubidium 87 atoms, with respective resonant frequencies for respective quantum transitions. The degree to which the feedback frequencies match or deviate from the resonance frequencies can be tracked using fluorescence or other electro-magnetic radiation output from the references. The controller can stabilize the laser system output frequency based on plural reference outputs to achieve both short-term and long-term stability, e.g., in the context of an atomic clock.

Classes IPC  ?

  • H01S 3/13 - Stabilisation de paramètres de sortie de laser, p. ex. fréquence ou amplitude
  • G04F 5/14 - Appareils pour la production d'intervalles de temps prédéterminés, utilisés comme étalons utilisant des horloges atomiques
  • H03L 7/26 - Commande automatique de fréquence ou de phaseSynchronisation utilisant comme référence de fréquence les niveaux d'énergie de molécules, d'atomes ou de particules subatomiques
  • H01S 5/0687 - Stabilisation de la fréquence du laser
  • H01S 3/094 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente

55.

OQTANT

      
Numéro de série 98219278
Statut Enregistrée
Date de dépôt 2023-10-11
Date d'enregistrement 2025-09-02
Propriétaire COLDQUANTA, INC. ()
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable software for manipulating neutral ultracold atoms through the use of non-medical laser systems for use in the research fields of science, education, and quantum technologies; downloadable software for operating and controlling scientific apparatus and instruments for studying quantum phenomena; downloadable computer software for managing virtual machines on a cloud computing platform for studying quantum phenomena Research services consisting of digital manipulation of neutral ultracold atoms by means of software controlling non-medical laser systems for use in the research fields of science, education, and quantum technologies; online non-downloadable software featuring software for operating and controlling scientific apparatus and instruments for use in studying quantum phenomena

56.

COMPACT VACUUM PACKAGING TECHNOLOGY USABLE WITH ION TRAPS

      
Numéro d'application US2023015307
Numéro de publication 2023/177745
Statut Délivré - en vigueur
Date de dépôt 2023-03-15
Date de publication 2023-09-21
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Hughes, Steven, Michael
  • Cahall, Clinton
  • Kross, Steffen, Michael
  • Hale, James, S.
  • Leon, Hugo
  • Jaskot, Matthew, Barton

Abrégé

A vacuum system is described. The vacuum system includes a vacuum cell and an ion trap. The vacuum cell includes walls having an inner surface that form at least a portion of a vacuum chamber. At least a portion of the inner surface has a topography including structures therein. The structures include a getter material. The ion trap is within the vacuum chamber.

Classes IPC  ?

  • H01J 49/24 - Systèmes à vide, p. ex. maintenant des pressions voulues
  • H01J 41/16 - Tubes à décharge pour l'évacuation par diffusion d'ions, p. ex. pompes ioniques, pompes ioniques à getter avec ionisation au moyen de cathodes thermo-ioniques en utilisant des getters
  • H01J 41/20 - Tubes à décharge pour l'évacuation par diffusion d'ions, p. ex. pompes ioniques, pompes ioniques à getter avec ionisation au moyen de cathodes froides en utilisant des getters

57.

COMPACT VACUUM PACKAGING TECHNOLOGY USABLE WITH ION TRAPS

      
Numéro d'application 18122032
Statut En instance
Date de dépôt 2023-03-15
Date de la première publication 2023-09-21
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Hughes, Steven Michael
  • Cahall, Clinton
  • Kross, Steffen Michael
  • Hale, James S.
  • Leon, Hugo
  • Jaskot, Matthew Barton

Abrégé

A vacuum system is described. The vacuum system includes a vacuum cell and an ion trap. The vacuum cell includes walls having an inner surface that form at least a portion of a vacuum chamber. At least a portion of the inner surface has a topography including structures therein. The structures include a getter material. The ion trap is within the vacuum chamber.

Classes IPC  ?

  • H01J 49/24 - Systèmes à vide, p. ex. maintenant des pressions voulues
  • H01J 49/42 - Spectromètres à stabilité de trajectoire, p. ex. monopôles, quadripôles, multipôles, farvitrons

58.

Drop-in multi-optics module for quantum-particle cell

      
Numéro d'application 17959979
Numéro de brevet 12444516
Statut Délivré - en vigueur
Date de dépôt 2022-10-04
Date de la première publication 2023-08-17
Date d'octroi 2025-10-14
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Hughes, Steven Michael
  • Sheridan, Iii, Christopher Robert

Abrégé

A drop-in multi-optics module for a quantum-particle (e.g., rubidium, cesium) cell provides for more convenient and cost-effective manufacture of such cells (including vacuum cells, cold/ultra-cold matter cells, vapor cells, and channel cells). In a 3D printing approach, a model of a frame augmented by buffer material is 3D printed. The buffer material is removed from the augmented frame to achieved desired dimensions with greater precision than could be achieved by 3D printing the frame directly. Optical and, in some cases, other components are attached to the frame to realize the multi-optics drop-in module. Alternatively, the module can be formed by cutting out portions of a metal sheet and then folding the resulting 2D preform.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer

59.

Miniature atomic spectroscopy reference cell system

      
Numéro d'application 18106455
Numéro de brevet 12411085
Statut Délivré - en vigueur
Date de dépôt 2023-02-06
Date de la première publication 2023-08-17
Date d'octroi 2025-09-09
Propriétaire
  • ColdQuanta, Inc. (USA)
  • COLDQUANTA UK LIMITED (USA)
Inventeur(s)
  • Ballance, Timothy George
  • Salim, Evan
  • Bowman, David

Abrégé

A spectroscopy system is described. The spectroscopy system includes a cell, a photodiode, and mirrors. The cell has walls forming a chamber therein. The chamber is configured to receive laser signal(s) and retaining a vapor therein. The vapor fluoresces in response to the laser signal(s). The mirrors are configured to direct fluorescent light from the vapor toward the photodiode. In some embodiments, the spectroscopy system is incorporated with a photonic integrated circuit.

Classes IPC  ?

60.

MINIATURE ATOMIC SPECTROSCOPY REFERENCE CELL SYSTEM

      
Numéro d'application US2023012447
Numéro de publication 2023/154252
Statut Délivré - en vigueur
Date de dépôt 2023-02-06
Date de publication 2023-08-17
Propriétaire
  • COLDQUANTA, INC. (USA)
  • COLDQUANTA UK LIMITED (Royaume‑Uni)
Inventeur(s)
  • Ballance, Timothy, George
  • Salim, Evan
  • Bowman, David

Abrégé

A spectroscopy system is described. The spectroscopy system includes a cell, a photodiode, and mirrors. The cell has walls forming a chamber therein. The chamber is configured to receive laser signal(s) and retaining a vapor therein. The vapor fluoresces in response to the laser signal(s). The mirrors are configured to direct fluorescent light from the vapor toward the photodiode. In some embodiments, the spectroscopy system is incorporated with a photonic integrated circuit.

Classes IPC  ?

  • G01N 21/31 - CouleurPropriétés spectrales, c.-à-d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p. ex. spectrométrie d'absorption atomique
  • G01N 21/64 - FluorescencePhosphorescence
  • G01J 3/02 - SpectrométrieSpectrophotométrieMonochromateursMesure de la couleur Parties constitutives
  • G01J 3/28 - Étude du spectre

61.

Time-multiplexed superpixel-based quantum-array readout system

      
Numéro d'application 17669777
Numéro de brevet 12353955
Statut Délivré - en vigueur
Date de dépôt 2022-02-11
Date de la première publication 2023-08-17
Date d'octroi 2025-07-08
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Anderson, Clifton Leon
  • Lichtman, Martin Tom
  • Ebert, Matthew

Abrégé

Quantum computing results can be stored in a quantum array of quantum-state carriers (QSCs) which must be read out in a form accessible to the classical world. The quantum array can be divided into regions that can be read in parallel. Each region is illuminated one QSC (e.g., atom) at a time and any resulting emissions are detected to determine the quantum state of each QSC and thus the value represented by the QSC. Multi-pixel superpixels are examined in each detection image to determine whether or not a respective QSC emitted in response to illumination. The field of view for each superpixel exceeds the area of the respective QSC, providing tolerance for misalignment of the photodetector relative to the quantum array.

Classes IPC  ?

  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06F 9/30 - Dispositions pour exécuter des instructions machines, p. ex. décodage d'instructions
  • G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer

62.

QUANTUM-PARTICLE CELL WITH PATTERNED TRANSPARENT CONDUCTIVE OXIDES

      
Numéro d'application 18095965
Statut En instance
Date de dépôt 2023-01-11
Date de la première publication 2023-08-03
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Hughes, Steven Michael

Abrégé

A quantum-particle cell manufacturing process includes coating a substrate with transparent conductive oxide (TCO) such as indium tin oxide (ITO). Regions of the TCO are then transformed, e.g., by pulsed-laser annealing, to increase their resistivity. The annealed region then electrically isolates adjacent higher conductivity and lower resistivity regions, which can serve as field plates. At least one annealed region extends from the cell interior through a bond between the substrate and sidewalls and into the cell exterior so that adjacent unannealed regions can serve as independently controllable feedthroughs. The annealing does not significantly affect the TCO thickness so the bond between the substrate and the sidewall structure remains intact and the completed quantum particle cell can be hermetically sealed.

Classes IPC  ?

  • H01L 31/18 - Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives
  • H01L 31/0224 - Electrodes
  • H01L 31/0352 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails caractérisés par leurs corps semi-conducteurs caractérisés par leur forme ou par les formes, les dimensions relatives ou la disposition des régions semi-conductrices

63.

COMPARING RABI OSCILLATION STIMULATIONS

      
Numéro d'application US2023010965
Numéro de publication 2023/141111
Statut Délivré - en vigueur
Date de dépôt 2023-01-17
Date de publication 2023-07-27
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Cole, Daniel, C.
  • Chung, Woo, Chang

Abrégé

While a qubit control system ( e.g., a laser system) Is in a first configuration, it causes a qubit state (as represented as a point on the surface of a Bloch sphere) of a quantum state carrier (QSC), e.g., an atom, to rotate in a first direction from an initial qubit state to a first configuration qubit state. While the qubit control system is in a second configuration, it causes the QSC state to rotate in a second direction opposite the first direction from the first configuration qubit state to a second configuration qubit state. The second configuration qubit state is read out as a 10} or 11 ). Repeating these actions results in a distribution of I O}s and I IJs that can be used to determine which of the two configurations results in higher Rabi frequencies. Iterating the above for other pairs of configurations can identify a configuration that delivers the most power to the QSC and thus yields the highest Rabi frequency.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

64.

METHOD AND SYSTEM FOR PROVIDING MULTIPLE SEALS FOR A COMPACT VACUUM CELL

      
Numéro d'application 18085501
Statut En instance
Date de dépôt 2022-12-20
Date de la première publication 2023-07-20
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Cahall, Clinton
  • Denney, Jayson
  • Noel, Thomas William
  • Leon, Hugo
  • Kross, Steffen Michael
  • Hale, James S.
  • Fitzgerald, Colin
  • Jaskot, Matthew Barton

Abrégé

A vacuum cell including a vacuum chamber, a first bond, and a second bond is described. The first bond affixes a first portion of the vacuum cell to a second portion of the vacuum cell. The first bond has a first bonding temperature and a first debonding temperature greater than the first bonding temperature. The second bond affixes a third portion of the vacuum cell to a fourth portion of the vacuum cell. The second bond has a second bonding temperature and a second debonding temperature. The second bonding temperature is less than the first debonding temperature.

Classes IPC  ?

  • H05K 5/06 - Enveloppes scellées hermétiquement
  • G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer

65.

Comparing Rabi oscillation stimulations

      
Numéro d'application 18098011
Numéro de brevet 11928554
Statut Délivré - en vigueur
Date de dépôt 2023-01-17
Date de la première publication 2023-07-20
Date d'octroi 2024-03-12
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Cole, Daniel C.
  • Chung, Woo Chang

Abrégé

s that can be used to determine which of the two configurations results in higher Rabi frequencies. Iterating the above for other pairs of configurations can identify a configuration that delivers the most power to the QSC and thus yields the highest Rabi frequency. This process can be used, for example, to align a laser so that its pulse yields a maximum Rabi frequency for an atom.

Classes IPC  ?

  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit

66.

SQYWIRE

      
Numéro de série 98083096
Statut En instance
Date de dépôt 2023-07-13
Propriétaire COLDQUANTA, INC. ()
Classes de Nice  ? 09 - Appareils et instruments scientifiques et électriques

Produits et services

Receivers of electronic signals; Radio-frequency receivers

67.

METHOD AND SYSTEM FOR PROVIDING MULTIPLE SEALS FOR A COMPACT VACUUM CELL

      
Numéro d'application US2022053570
Numéro de publication 2023/122125
Statut Délivré - en vigueur
Date de dépôt 2022-12-20
Date de publication 2023-06-29
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Cahall, Clinton
  • Denney, Jayson
  • Noel, Thomas, William
  • Leon, Hugo
  • Kross, Steffen, Michael
  • Hale, James, S.
  • Fitzgerald, Colin
  • Jaskot, Matthew, Barton

Abrégé

A vacuum cell including a vacuum chamber, a first bond, and a second bond is described. The first bond affixes a first portion of the vacuum cell to a second portion of the vacuum cell. The first bond has a first bonding temperature and a first debonding temperature greater than the first bonding temperature. The second bond affixes a third portion of the vacuum cell to a fourth portion of the vacuum cell. The second bond has a second bonding temperature and a second debonding temperature. The second bonding temperature is less than the first debonding temperature.

Classes IPC  ?

  • H01J 49/24 - Systèmes à vide, p. ex. maintenant des pressions voulues
  • C23C 14/14 - Matériau métallique, bore ou silicium
  • H01L 23/48 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p. ex. fils de connexion ou bornes
  • C04B 37/02 - Liaison des articles céramiques cuits avec d'autres articles céramiques cuits ou d'autres articles, par chauffage avec des articles métalliques
  • C23C 14/00 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement

68.

Beamforming vacuum cell

      
Numéro d'application 18109762
Numéro de brevet 12130446
Statut Délivré - en vigueur
Date de dépôt 2023-02-14
Date de la première publication 2023-06-22
Date d'octroi 2024-10-29
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Hughes, Steven Michael

Abrégé

Beamformers are formed (e.g., carved) from a stack of transparent sheets. A rear face of each sheet has a reflective coating. The reflectivities of the coatings vary monotonically with sheet position within the stack. The sheets are tilted relative to the intended direction of an input beam and then bonded to form the stack. The carving can include dicing the stack to yield stacklets, and polishing the stacklets to form beamformers. Each beamformer is thus a stack of beamsplitters, including a front beamsplitter in the form of a triangular or trapezoidal prism, and one or more beamsplitters in the form of rhomboid prisms. In use, a beamformer forms an output beam from an input beam. More specifically, the beamformer splits an input beam into plural output beam components that collectively constitute an output beam that differs in cross section from the input beam.

Classes IPC  ?

  • G02B 27/09 - Mise en forme du faisceau, p. ex. changement de la section transversale, non prévue ailleurs
  • G02B 1/11 - Revêtements antiréfléchissants
  • G02B 27/10 - Systèmes divisant ou combinant des faisceaux
  • G02B 27/14 - Systèmes divisant ou combinant des faisceaux fonctionnant uniquement par réflexion
  • G02B 21/32 - Micromanipulateurs combinés par construction avec des microscopes

69.

OPTICAL ROUTING NETWORK-BASED QUANTUM ARRAY CONTROL

      
Numéro d'application US2022045576
Numéro de publication 2023/091245
Statut Délivré - en vigueur
Date de dépôt 2022-10-03
Date de publication 2023-05-25
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s) Saffman, Mark

Abrégé

A quantum computer system uses a network of Mach-Zehnder interferometers (MZIs) to route laser light to selected atoms of a quantum array. The MZI network is defined in a photonic integrated circuit (PIC), which also includes an array of optical gratings. A laser system generates the light, the electronically controlled MZI network routes the light to respective optical gratings. The optical gratings convert the light from the MZI network into beams to illuminate the respective atoms so as to conditionally change their quantum states. This routing process offers advantages of economy, scalability and reliability over alternatives approaches to optical control of quantum states.

Classes IPC  ?

  • G01B 9/02 - Interféromètres
  • G06N 3/06 - Réalisation physique, c.-à-d. mise en œuvre matérielle de réseaux neuronaux, de neurones ou de parties de neurone
  • H03K 17/92 - Commutation ou ouverture de porte électronique, c.-à-d. par d'autres moyens que la fermeture et l'ouverture de contacts caractérisée par l'utilisation de composants spécifiés par l'utilisation, comme éléments actifs, de dispositifs supraconducteurs
  • H04L 9/08 - Répartition de clés
  • B82Y 20/00 - Nano-optique, p. ex. optique quantique ou cristaux photoniques
  • G06E 3/00 - Dispositifs non prévus dans le groupe , p. ex. pour traiter des données analogiques hybrides
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • G06N 20/00 - Apprentissage automatique

70.

OPTICAL ROUTING NETWORK-BASED QUANTUM ARRAY CONTROL

      
Numéro d'application 17675854
Statut En instance
Date de dépôt 2022-02-18
Date de la première publication 2023-05-25
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Saffman, Mark

Abrégé

A quantum computer system uses a network of Mach-Zehnder interferometers (MZIs) to route laser light to selected atoms of a quantum array. The MZI network is defined in a photonic integrated circuit (PIC), which also includes an array of optical gratings. A laser system generates the light, the electronically controlled MZI network routes the light to respective optical gratings. The optical gratings convert the light from the MZI network into beams to illuminate the respective atoms so as to conditionally change their quantum states. This routing process offers advantages of economy, scalability and reliability over alternatives approaches to optical control of quantum states.

Classes IPC  ?

  • H04B 10/70 - Communications quantiques photoniques
  • G02F 1/21 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur par interférence
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit

71.

DROP-IN MULTI-OPTICS MODULE FOR QUANTUM-PARTICLE CELL

      
Numéro d'application US2022045683
Numéro de publication 2023/059645
Statut Délivré - en vigueur
Date de dépôt 2022-10-04
Date de publication 2023-04-13
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Hughes, Steven, Michael
  • Sheridan Iii, Christopher, Robert

Abrégé

A drop-in multi-optics module for a quantum-particle (e.g., rubidium, cesium) cell provides for more convenient and cost-effective manufacture of such cells (including vacuum cells, cold/ultra-cold matter cells, vapor cells, and channel cells). In a 3D printing approach, a model of a frame augmented by buffer material is 3D printed. The buffer material is removed from the augmented frame to achieved desired dimensions with greater precision than could be achieved by 3D printing the frame directly. Optical and, in some cases, other components are attached to the frame to realize the multi-optics drop-in module. Alternatively, the module can be formed by cutting out portions of a metal sheet and then folding the resulting 2D preform.

Classes IPC  ?

  • G21K 1/06 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer utilisant la diffraction, la réfraction ou la réflexion, p. ex. monochromateurs
  • B22F 3/00 - Fabrication de pièces ou d'objets à partir de poudres métalliques, caractérisée par le mode de compactage ou de frittageAppareils spécialement adaptés à cet effet
  • G21K 1/08 - Déviation, concentration ou focalisation du faisceau par des moyens électriques ou magnétiques
  • B21D 5/00 - Cintrage des tôles le long de lignes droites, p. ex. pour former un pli simple
  • B21D 28/00 - Mise en forme par découpage à la pressePerforation
  • H01J 49/24 - Systèmes à vide, p. ex. maintenant des pressions voulues

72.

COHERENT OSCILLATORY MATTERWAVE RESONATOR SYSTEM

      
Numéro d'application 17687643
Statut En instance
Date de dépôt 2022-03-06
Date de la première publication 2023-03-16
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Anderson, Dana Zachary

Abrégé

A resonator for coherent oscillator matterwaves (COMW) includes a cavity bound by reflectors. The reflectors are fields of light blue-detuned with respect to an energy-level transition of the rubidium 87 (87Rb) atoms that constitute the COMW. One of the reflectors is partially transmissive to that COMW can enter and exit the resonator. The COMW resonator can be used to stabilize a COMW oscillator much as an optical resonator can stabilize a laser.

Classes IPC  ?

  • H01S 3/082 - Structure ou forme des résonateurs optiques ou de leurs composants comprenant trois réflecteurs ou plus définissant une pluralité de résonateurs, p. ex. pour la sélection ou la suppression de modes
  • H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet

73.

Accelerometer using coherent oscillatory matterwaves

      
Numéro d'application 17687649
Numéro de brevet 12126349
Statut Délivré - en vigueur
Date de dépôt 2022-03-06
Date de la première publication 2023-03-16
Date d'octroi 2024-10-22
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Anderson, Dana Zachary

Abrégé

An accelerometer/gravitometer based on coherent oscillatory matterwaves (COMW). The accelerometer includes a pair of COMW generator systems, each with an oscillator and a respective resonator to stabilize the oscillator output. One of the resonators can be aligned with acceleration, while the other is transverse to the acceleration. The COMW generator outputs can be compared to derive a measurement of acceleration.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G01J 3/44 - Spectrométrie RamanSpectrométrie par diffusion
  • G01P 15/093 - Mesure de l'accélérationMesure de la décélérationMesure des chocs, c.-à-d. d'une variation brusque de l'accélération en ayant recours aux forces d'inertie avec conversion en valeurs électriques ou magnétiques au moyen de capteurs photo-électriques
  • G01V 7/04 - Moyens électriques, photo-électriques ou magnétiques d'indication ou d'enregistrement
  • H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
  • H01S 3/082 - Structure ou forme des résonateurs optiques ou de leurs composants comprenant trois réflecteurs ou plus définissant une pluralité de résonateurs, p. ex. pour la sélection ou la suppression de modes
  • H03L 7/26 - Commande automatique de fréquence ou de phaseSynchronisation utilisant comme référence de fréquence les niveaux d'énergie de molécules, d'atomes ou de particules subatomiques
  • H04B 10/61 - Récepteurs cohérents
  • H04B 10/70 - Communications quantiques photoniques

74.

Microwave sensor using autler-townes splitting

      
Numéro d'application 17734706
Numéro de brevet 11630143
Statut Délivré - en vigueur
Date de dépôt 2022-05-02
Date de la première publication 2023-03-16
Date d'octroi 2023-04-18
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Salim, Evan
  • Anderson, Dana Zachary
  • Denney, Jayson
  • Majdeteimouri, Farhad

Abrégé

A microwave sensor determines an electric-field strength of a microwave field populated by quantum particles in an ultra-high vacuum (UHV) cell. A probe laser beam and a coupling laser beam are directed into the UHV cell so that they are generally orthogonal to each other and intersect to define a “Rydberg” intersection, so-called as the quantum particles within the Rydberg intersection transition to a pair of Rydberg states. The frequency of the probe laser beam is swept so that a frequency spectrum of the probe laser beam can be captured. The frequency spectrum is analyzed to determine a frequency difference between Autler-Townes peaks. The electric-field strength of the microwave field within the Rydberg intersection is then determined based on this frequency difference.

Classes IPC  ?

  • G01R 29/08 - Mesure des caractéristiques du champ électromagnétique
  • G01R 33/60 - Dispositions ou appareils pour la mesure des grandeurs magnétiques faisant intervenir la résonance magnétique utilisant la résonance paramagnétique électronique

75.

COHERENT OSCILLATORY MATTERWAVE RESONATOR SYSTEM

      
Numéro d'application US2022039867
Numéro de publication 2023/038751
Statut Délivré - en vigueur
Date de dépôt 2022-08-09
Date de publication 2023-03-16
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s) Anderson, Dana, Zachary

Abrégé

A resonator for coherent oscillator matterwaves (COMW) includes a cavity bound by reflectors. The reflectors are fields of light blue-detuned with respect to an energy-level transition of the rubidium 87 (87Rb) atoms that constitute the COMW. One of the reflectors is partially transmissive to that COMW can enter and exit the resonator. The COMW resonator can be used to stabilize a COMW oscillator much as an optical resonator can stabilize a laser.

Classes IPC  ?

  • H01P 7/06 - Résonateurs à cavité
  • G01C 19/00 - GyroscopesDispositifs sensibles à la rotation utilisant des masses vibrantesDispositifs sensibles à la rotation sans masse en mouvementMesure de la vitesse angulaire en utilisant les effets gyroscopiques
  • G01C 19/66 - Gyromètres à laser en anneau
  • G21K 1/08 - Déviation, concentration ou focalisation du faisceau par des moyens électriques ou magnétiques
  • H01J 21/18 - Tubes à voie de décharge unique à moyens de commande magnétiquesTubes à voie de décharge unique à moyens de commande magnétiques et électrostatiques
  • H01P 7/00 - Résonateurs du type guide d'ondes
  • H05H 3/02 - Production d'un faisceau moléculaire ou atomique, p. ex. d'un faisceau résonnant

76.

Closed-loop generation of coherent oscillatory matterwaves

      
Numéro d'application 17687641
Numéro de brevet 12261614
Statut Délivré - en vigueur
Date de dépôt 2022-03-06
Date de la première publication 2023-03-16
Date d'octroi 2025-03-25
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Anderson, Dana Zachary

Abrégé

A closed-loop coherent oscillator matterwave (COMW) system generates a COMW. Atoms tunnel into a COMW oscillator to populate the COMW generated and emitted by the oscillator. A detuned light-field-based COMW splitter divides the emitted COMW between an output COMW and a regulator COMW. A COMW resonator, including detuned light-field mirrors, receives the regulator COMW and returns a feedback COMW. A COMW sensor evaluates the intensity of the feedback COMW. A controller adjusts the oscillator based on the evaluation to optimize the COMW output of the system.

Classes IPC  ?

  • H03L 7/26 - Commande automatique de fréquence ou de phaseSynchronisation utilisant comme référence de fréquence les niveaux d'énergie de molécules, d'atomes ou de particules subatomiques
  • G01J 3/44 - Spectrométrie RamanSpectrométrie par diffusion
  • G01P 15/093 - Mesure de l'accélérationMesure de la décélérationMesure des chocs, c.-à-d. d'une variation brusque de l'accélération en ayant recours aux forces d'inertie avec conversion en valeurs électriques ou magnétiques au moyen de capteurs photo-électriques
  • G01V 7/04 - Moyens électriques, photo-électriques ou magnétiques d'indication ou d'enregistrement
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
  • H01S 3/082 - Structure ou forme des résonateurs optiques ou de leurs composants comprenant trois réflecteurs ou plus définissant une pluralité de résonateurs, p. ex. pour la sélection ou la suppression de modes
  • H04B 10/61 - Récepteurs cohérents
  • H04B 10/70 - Communications quantiques photoniques

77.

Beamforming vacuum cell

      
Numéro d'application 16442461
Numéro de brevet 11604362
Statut Délivré - en vigueur
Date de dépôt 2019-06-15
Date de la première publication 2023-03-14
Date d'octroi 2023-03-14
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Hughes, Steven Michael

Abrégé

Beamformers are formed (e.g., carved) from a stack of transparent sheets. A rear face of each sheet has a reflective coating. The reflectivities of the coatings vary monotonically with sheet position within the stack. The sheets are tilted relative to the intended direction of an input beam and then bonded to form the stack. The carving can include dicing the stack to yield stacklets, and polishing the stacklets to form beamformers. Each beamformer is thus a stack of beamsplitters, including a front beamsplitter in the form of a triangular or trapezoidal prism, and one or more beamsplitters in the form of rhomboid prisms. In use, a beamformer forms an output beam from an input beam. More specifically, the beamformer splits an input beam into plural output beam components that collectively constitute an output beam that differs in cross section from the input beam.

Classes IPC  ?

  • G02B 27/09 - Mise en forme du faisceau, p. ex. changement de la section transversale, non prévue ailleurs
  • G02B 27/14 - Systèmes divisant ou combinant des faisceaux fonctionnant uniquement par réflexion
  • G02B 27/10 - Systèmes divisant ou combinant des faisceaux
  • G02B 1/11 - Revêtements antiréfléchissants
  • G02B 21/32 - Micromanipulateurs combinés par construction avec des microscopes

78.

Ultra-high-vacuum cell with integrated meta-optics

      
Numéro d'application 17752069
Numéro de brevet 12411263
Statut Délivré - en vigueur
Date de dépôt 2022-05-24
Date de la première publication 2023-03-09
Date d'octroi 2025-09-09
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Oh, Taek Il
  • Hughes, Steven Michael

Abrégé

Metamaterial optics are integrated with vacuum-boundary walls of ultra-high-vacuum (UHV) cells to manipulate light in a manner analogous to various bulk optical elements including lenses, mirrors, beam splitters, polarizers, waveplate, wave guides, frequency modulators, and amplitude modulators. For example, UHV cells can have metasurface lenses formed on interior and/or exterior surfaces on one or more of their vacuum-boundary walls. Each metasurface lens can include a plurality of mesas with the same height and various cross-sectional dimensions. The uses of metasurface lenses allows through-going laser beams to be expanded, collimated or focused without using bulky refractive optics. Each metasurface lens can be formed on a cell wall using photolithographic or other techniques.

Classes IPC  ?

  • G02B 1/00 - Éléments optiques caractérisés par la substance dont ils sont faitsRevêtements optiques pour éléments optiques
  • G02B 3/00 - Lentilles simples ou composées
  • G02B 5/18 - Grilles de diffraction
  • G21K 1/06 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer utilisant la diffraction, la réfraction ou la réflexion, p. ex. monochromateurs
  • G02B 7/00 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques

79.

MINIMOT

      
Numéro de série 97806571
Statut Enregistrée
Date de dépôt 2023-02-22
Date d'enregistrement 2024-01-23
Propriétaire ColdQuanta, Inc. ()
Classes de Nice  ? 09 - Appareils et instruments scientifiques et électriques

Produits et services

scientific device used to produce and trap cold atoms

80.

Constant-frequency acousto-optic beam steering

      
Numéro d'application 17727756
Numéro de brevet 11531249
Statut Délivré - en vigueur
Date de dépôt 2022-04-24
Date de la première publication 2022-12-20
Date d'octroi 2022-12-20
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Saffman, Mark

Abrégé

A pair of acousto-optic deflectors (AODs) is used to steer a pair of laser beams to address individual atoms of an array of atoms so that the beams can conditionally induce a 2-photon transition between the atom's quantum energy levels. The first beam is deflected into a +1 diffraction order, resulting in an AOD output beam with a frequency greater than that of the respective AOD input beam. The second beam is deflected into a −1 diffraction order so that the AOD output beam has a frequency less than that of the respective AOD input beam. The equal and opposite frequency changes compensate it other so that the sum of the output frequencies remains constant.

Classes IPC  ?

  • G02F 1/33 - Dispositifs de déflexion acousto-optique

81.

TIQKER

      
Numéro de série 97713412
Statut En instance
Date de dépôt 2022-12-12
Propriétaire ColdQuanta, Inc. ()
Classes de Nice  ? 14 - Métaux précieux et leurs alliages; bijouterie; horlogerie

Produits et services

Precision frequency reference and clock products in the nature of optical frequency clocks with quantum transitions in atomic references for the purposes of providing the stability for national standards, global navigation satellite systems, financial and other transaction time stamping, data and communication network synchronization, assured positions systems, and metrology; Precision frequency reference and clock products in the nature of microwave frequency clocks with quantum transitions in atomic references for the purposes of providing the stability for national standards, global navigation satellite systems, financial and other transaction time stamping, data and communication network synchronization, assured positions systems, and metrology

82.

Atomic clock with atom-trap enhanced oscillator regulation

      
Numéro d'application 17695968
Numéro de brevet 11754979
Statut Délivré - en vigueur
Date de dépôt 2022-03-16
Date de la première publication 2022-12-08
Date d'octroi 2023-09-12
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Salim, Evan
  • Olson, Judith
  • Kortyna, Andrew
  • Genkina, Dina
  • Cruz, Flavio

Abrégé

A rubidium optical atomic clock uses a modulated 778 nanometer (nm) probe beam and its reflection to excite rubidium 87 atoms, some of which emit 758.8 nm fluorescence as they decay back to the ground state. A spectral filter rejects scatter of the 778 nm probe beams while transmitting the 775.8 nm fluorescence so that the latter can be detected with a high signal-to-noise ratio. Since the spectral filter is only acceptably effective at angles of incidence less than 8° from the perpendicular, the atoms are localized by a magneto-optical trap so that most of the atoms lie within a conical volume defined by the 8° angle so that the resulting fluorescence detection signal has a high signal-to-noise ratio. The fluorescence detection signal can be demodulated to provide an error signal from which desired adjustments to the oscillator frequency can be calculated.

Classes IPC  ?

  • G04F 5/14 - Appareils pour la production d'intervalles de temps prédéterminés, utilisés comme étalons utilisant des horloges atomiques
  • H03L 7/26 - Commande automatique de fréquence ou de phaseSynchronisation utilisant comme référence de fréquence les niveaux d'énergie de molécules, d'atomes ou de particules subatomiques
  • G01N 21/64 - FluorescencePhosphorescence

83.

Fluorescence detection with optical-trap-enhanced spectral filtering

      
Numéro d'application 17695979
Numéro de brevet 11880171
Statut Délivré - en vigueur
Date de dépôt 2022-03-16
Date de la première publication 2022-12-08
Date d'octroi 2024-01-23
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Salim, Evan
  • Olson, Judith
  • Kortyna, Andrew
  • Genkina, Dina
  • Cruz, Flavio

Abrégé

A fluorescence detection process begins by localizing rubidium 87 atoms within an optical (all-optical or magneto-optical) trap so that at least most of the atoms in the trap are within a cone defined by an effective angle, e.g., 8°, of a spectral filter. Within the effective angle of incidence, the filter effectively rejects (reflects or absorbs) 778 nanometer (nm) fluorescence and effectively transmits 775.8 nm fluorescence. Any 775.8 nm fluorescence arrive outside the effective angle of incidence. Thus, using an optical trap to localize the atoms within the cone enhances the signal-to-noise ratio of the fluorescence transmitted through the spectral filter and arriving a photomultiplier or other photodetector, resulting fluorescence detection signal with an enhanced S/N.

Classes IPC  ?

  • G01N 21/64 - FluorescencePhosphorescence
  • G04F 5/14 - Appareils pour la production d'intervalles de temps prédéterminés, utilisés comme étalons utilisant des horloges atomiques
  • H03L 7/26 - Commande automatique de fréquence ou de phaseSynchronisation utilisant comme référence de fréquence les niveaux d'énergie de molécules, d'atomes ou de particules subatomiques

84.

Frequency modulation spectroscopy with localized fluorescence

      
Numéro d'application 17695986
Numéro de brevet 11733655
Statut Délivré - en vigueur
Date de dépôt 2022-03-16
Date de la première publication 2022-12-08
Date d'octroi 2023-08-22
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Salim, Evan
  • Olson, Judith
  • Kortyna, Andrew
  • Genkina, Dina
  • Cruz, Flavio

Abrégé

A frequency-modulated spectrometry (FMS) output is used to stabilize an atomic clock by serving as an error signal to regulate the clock's oscillator frequency. Rubidium 87 atoms are localized within a hermetically sealed cell using an optical (e.g., magneto-optical) trap. The oscillator output is modulated by a sinusoidal radio frequency signal and the modulated signal is then frequency doubled to provide a modulated 788 nm probe signal. The probe signal excites the atoms, so they emit 775.8 nm fluorescence. A spectral filter is used to block 788 nm scatter from reaching a photodetector, but also blocks 775.8 nm fluorescence with an angle of incidence larger than 8° relative to a perpendicular to the spectral filter. The localized atoms lie within a conical volume defined by the 8° effective angle of incidence so an FMS output with a high signal-to-noise ratio is obtained.

Classes IPC  ?

  • G04F 5/14 - Appareils pour la production d'intervalles de temps prédéterminés, utilisés comme étalons utilisant des horloges atomiques
  • H03L 7/26 - Commande automatique de fréquence ou de phaseSynchronisation utilisant comme référence de fréquence les niveaux d'énergie de molécules, d'atomes ou de particules subatomiques
  • G01N 21/64 - FluorescencePhosphorescence

85.

Break-seal system with breakable-membrane bridging rings

      
Numéro d'application 17680123
Numéro de brevet 11965598
Statut Délivré - en vigueur
Date de dépôt 2022-02-24
Date de la première publication 2022-12-08
Date d'octroi 2024-04-23
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Hughes, Steven Michael

Abrégé

A monolithic break-seal includes a membrane that separates an outer ring from an inner ring. The inner ring is bonded to a vacuum cell and the outer ring is bonded to a vacuum interface. To protect against unintentional breakage of the membrane, a surface of the outer ring not bonded to the vacuum interface contacts the vacuum cell. An external vacuum system evacuates the vacuum cell through an aperture of the break-seal. Once a target vacuum level is reached for the vacuum cell, a cap is bonded to the inner ring, blocking the aperture and hermetically sealing the vacuum cell. The membrane is broken so that the hermetically sealed vacuum cell can be separated from the vacuum interface to which the outer ring remains bonded.

Classes IPC  ?

  • F16J 15/10 - Joints d'étanchéité entre surfaces immobiles entre elles avec garniture solide comprimée entre les surfaces à joindre par garniture non métallique

86.

Acousto-optic quantum-array addressing

      
Numéro d'application 17727760
Numéro de brevet 11488052
Statut Délivré - en vigueur
Date de dépôt 2022-04-24
Date de la première publication 2022-11-01
Date d'octroi 2022-11-01
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Saffman, Mark

Abrégé

A pair of acousto-optic deflectors (AODs) is used to steer a pair of laser beams to address individual atoms of an array of atoms so that the beams can conditionally induce a 2-photon transition between the atom's quantum energy levels. The first beam is deflected into a +1 diffraction order, resulting in an AOD output beam with a frequency greater than that of the respective AOD input beam. The second beam is deflected into a −1 diffraction order so that the AOD output beam has a frequency less than that of the respective AOD input beam. The equal and opposite frequency changes compensate it other so that the sum of the output frequencies remains resonant with the transition of interest. Thus, AODs can be used to steer laser beams to address individual atoms of an atom array.

Classes IPC  ?

  • H04B 10/00 - Systèmes de transmission utilisant des ondes électromagnétiques autres que les ondes hertziennes, p. ex. les infrarouges, la lumière visible ou ultraviolette, ou utilisant des radiations corpusculaires, p. ex. les communications quantiques
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G01R 29/08 - Mesure des caractéristiques du champ électromagnétique
  • H04B 10/70 - Communications quantiques photoniques
  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard
  • H04J 14/00 - Systèmes multiplex optiques

87.

WIDEBAND TUNABLE RYDBERG MICROWAVE DETECTOR

      
Numéro d'application US2022019523
Numéro de publication 2022/197507
Statut Délivré - en vigueur
Date de dépôt 2022-03-09
Date de publication 2022-09-22
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Anderson, Dana, Zachary
  • Fan, Haoquan
  • Wang, Ying-Ju
  • Bottomley, Eric, Magnuson
  • Hughes, Steven, Michael

Abrégé

An electromagnetic field detector including a vapor cell, an excitation system, and a frequency tuner is described. The vapor cell has a plurality of quantum particles therein. The excitation system excites the quantum particles to a first Rydberg state. The first Rydberg state has a transition to a second Rydberg state at a first frequency. The frequency tuner generates a tunable field in a portion of the vapor cell. The tunable field shifts the first Rydberg state and/or the second Rydberg state such that the transition to the second Rydberg state is at a second frequency different from the first frequency. The detection frequency range for the electromagnetic field detector is continuous and includes the first frequency and the second frequency.

Classes IPC  ?

  • G01R 29/08 - Mesure des caractéristiques du champ électromagnétique
  • G01R 33/02 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques

88.

Wideband tunable rydberg microwave detector

      
Numéro d'application 17690577
Numéro de brevet 12105129
Statut Délivré - en vigueur
Date de dépôt 2022-03-09
Date de la première publication 2022-09-15
Date d'octroi 2024-10-01
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Anderson, Dana Zachary
  • Fan, Haoquan
  • Wang, Ying-Ju
  • Bottomley, Eric Magnuson
  • Hughes, Steven Michael

Abrégé

An electromagnetic field detector including a vapor cell, an excitation system, and a frequency tuner is described. The vapor cell has a plurality of quantum particles therein. The excitation system excites the quantum particles to a first Rydberg state. The first Rydberg state has a transition to a second Rydberg state at a first frequency. The frequency tuner generates a tunable field in a portion of the vapor cell. The tunable field shifts the first Rydberg state and/or the second Rydberg state such that the transition to the second Rydberg state is at a second frequency different from the first frequency. The detection frequency range for the electromagnetic field detector is continuous and includes the first frequency and the second frequency.

Classes IPC  ?

  • G01R 29/08 - Mesure des caractéristiques du champ électromagnétique

89.

QUANTUM SYSTEM WITH MULTIPLE-WAVELENGTH ARRAY TRAP

      
Numéro d'application US2021043790
Numéro de publication 2022/177599
Statut Délivré - en vigueur
Date de dépôt 2021-07-29
Date de publication 2022-08-25
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Noel, Thomas, William
  • Saffman, Mark

Abrégé

e.g.e.g., cesium atoms, is formed using electromagnetic radiation (EMR) of different wavelengths (concurrently and/or at different times). "Red-detuned" EMR, having a trap wavelength longer than a resonant wavelength for a quantum particle is "attracting" and, so, can be used to form the array trap while loading atoms into the array trap. "Blue-detuned" EMR, having a trap wavelength shorter than the resonant wavelength can repel atoms into dark areas away from the EMR peaks so that the atoms are not disturbed by interference carried by the EMR; accordingly, the blue-detuned EMR is used to form the array trap during quantum-circuit execution. Red and blue detuned EMR are used together to form deeper traps that can be used to detect vacant atom sites. Other combinations of trap wavelengths can also be used.

Classes IPC  ?

  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

90.

PULSED-LASER MODIFICATION OF QUANTUM-PARTICLE CELLS

      
Numéro d'application US2022016356
Numéro de publication 2022/177864
Statut Délivré - en vigueur
Date de dépôt 2022-02-14
Date de publication 2022-08-25
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s) Hughes, Steven, Michael

Abrégé

e.g.e.g.e.g., alkali-metal and alkaline-earth-metal atoms) ultra-high vacuum (UHV) cells to bond, ablate, and/or chemically modify vacuum-facing surfaces of the cell. The pulses are generated outside the cell and are transmitted through a vacuum-boundary wall. In one example, one vacuum-boundary wall is first contact bonded to other vacuum boundary walls at a relatively low temperature (below 200 °C), sufficient to form a temporary hermetic seal. Pulsed laser bonding is used to reinforce the contact bonds, correcting defects and generally increasing the robustness of the seal. The pulses provide high peak power to ensure strong bonds, but low total heat so as to avoid heat damage to nearby cell components and to limit quantum-particle sorbtion to and into cell walls.

Classes IPC  ?

  • B23K 26/12 - Travail par rayon laser, p. ex. soudage, découpage ou perçage sous atmosphère particulière, p. ex. dans une enceinte
  • B23K 26/20 - Assemblage
  • C03B 23/18 - Finition et scellement des ampoules
  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit

91.

Quantum system with multi-wavelength array trap

      
Numéro d'application 17340787
Numéro de brevet 12057242
Statut Délivré - en vigueur
Date de dépôt 2021-06-07
Date de la première publication 2022-08-18
Date d'octroi 2024-08-06
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Noel, Thomas William
  • Saffman, Mark

Abrégé

A trap for quantum particles, e.g., cesium atoms, is formed using electromagnetic radiation (EMR) of different wavelengths (concurrently and/or at different times). “Red-detuned” EMR, having a trap wavelength longer than a resonant wavelength for a quantum particle is “attracting” and, so, can be used to form the array trap while loading atoms into the array trap. “Blue-detuned” EMR, having a trap wavelength shorter than the resonant wavelength can repel atoms into dark areas away from the EMR peaks so that the atoms are not disturbed by interference carried by the EMR; accordingly, the blue-detuned EMR is used to form the array trap during quantum-circuit execution. Red and blue detuned EMR are used together to form deeper traps that can be used to detect vacant atom sites. Other combinations of trap wavelengths can also be used.

Classes IPC  ?

  • G21K 1/00 - Dispositions pour manipuler des particules ou des rayonnements ionisants, p. ex. pour focaliser ou pour modérer
  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique

92.

Vacuum cell configured for reduced inner chamber helium permeation

      
Numéro d'application 17667433
Numéro de brevet 11776797
Statut Délivré - en vigueur
Date de dépôt 2022-02-08
Date de la première publication 2022-08-18
Date d'octroi 2023-10-03
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Hughes, Steven Michael

Abrégé

A vacuum cell is described. The vacuum cell includes an inner chamber, a buffer channel, and a buffer ion pump. The buffer channel is fluidically isolated from the inner chamber and fluidically isolated from an ambient external to the vacuum cell. The buffer ion pump is fluidically coupled to the buffer channel and fluidically isolated from the ambient and the inner chamber.

Classes IPC  ?

  • H01J 41/12 - Tubes à décharge pour l'évacuation par diffusion d'ions, p. ex. pompes ioniques, pompes ioniques à getter
  • F04B 37/04 - Emploi de matériaux spécifiés pour l'absorption ou l'adsorption
  • F04B 37/14 - Pompes spécialement adaptées aux fluides compressibles et ayant des caractéristiques pertinentes non prévues dans les groupes ou présentant un intérêt autre que celui visé par ces groupes pour utilisation particulière pour obtenir un vide élevé
  • F04B 15/08 - Pompes adaptées pour travailler avec des fluides particuliers, p. ex. grâce à l'emploi de matériaux spécifiés pour la pompe elle-même ou certaines de ses parties avec des liquides près de leur point d'ébullition, p. ex. à une pression anormalement basse les liquides ayant une température d'ébullition peu élevée

93.

Quantum system with multiple-wavelength array trap

      
Numéro d'application 17353306
Numéro de brevet 12141655
Statut Délivré - en vigueur
Date de dépôt 2021-06-21
Date de la première publication 2022-08-18
Date d'octroi 2024-11-12
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Noel, Thomas William
  • Saffman, Mark

Abrégé

A trap for quantum particles, e.g., cesium atoms, is formed using electromagnetic radiation (EMR) of different wavelengths (concurrently and/or at different times). “Red-detuned” EMR, having a trap wavelength longer than a resonant wavelength for a quantum particle is “attracting” and, so, can be used to form the array trap while loading atoms into the array trap. “Blue-detuned” EMR, having a trap wavelength shorter than the resonant wavelength can repel atoms into dark areas away from the EMR peaks so that the atoms are not disturbed by interference carried by the EMR; accordingly, the blue-detuned EMR is used to form the array trap during quantum-circuit execution. Red and blue detuned EMR are used together to form deeper traps that can be used to detect vacant atom sites. Other combinations of trap wavelengths can also be used.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • H01S 5/343 - Structure ou forme de la région activeMatériaux pour la région active comprenant des structures à puits quantiques ou à superréseaux, p. ex. lasers à puits quantique unique [SQW], lasers à plusieurs puits quantiques [MQW] ou lasers à hétérostructure de confinement séparée ayant un indice progressif [GRINSCH] dans des composés AIIIBV, p. ex. laser AlGaAs

94.

Pulsed-laser modification of quantum-particle cells

      
Numéro d'application 17493155
Statut En instance
Date de dépôt 2021-10-04
Date de la première publication 2022-08-18
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Hughes, Steven Michael

Abrégé

A pulsed-laser applies short (e.g., less than 10 pico-seconds) pulses to modify quantum particle (e.g., alkali-metal and alkaline-earth-metal atoms) ultra-high vacuum (UHV) cells to bond, ablate, and/or chemically modify vacuum-facing surfaces of the cell. The pulses are generated outside the cell and are transmitted through a vacuum-boundary wall. In one example, one vacuum-boundary wall is first contact bonded to other vacuum boundary walls at a relatively low temperature (below 200° C.), sufficient to form a temporary hermetic seal. Pulsed laser bonding is used to reinforce the contact bonds, correcting defects and generally increasing the robustness of the seal. The pulses provide high peak power to ensure strong bonds, but low total heat so as to avoid heat damage to nearby cell components and to limit quantum-particle sorbtion to and into cell walls.

Classes IPC  ?

  • H01L 29/66 - Types de dispositifs semi-conducteurs
  • H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives

95.

VACUUM CELL CONFIGURED FOR REDUCED INNER CHAMBER HELIUM PERMEATION

      
Numéro d'application US2022015697
Numéro de publication 2022/173763
Statut Délivré - en vigueur
Date de dépôt 2022-02-08
Date de publication 2022-08-18
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s) Hughes, Steven, Michael

Abrégé

A vacuum cell is described. The vacuum cell includes an inner chamber, a buffer channel, and a buffer ion pump. The buffer channel is fluidically isolated from the inner chamber and fluidically isolated from an ambient external to the vacuum cell. The buffer ion pump is fluidically coupled to the buffer channel and fluidically isolated from the ambient and the inner chamber.

Classes IPC  ?

  • C25D 17/00 - Éléments structurels, ou leurs assemblages, des cellules pour revêtement électrolytique
  • C25D 5/22 - Dépôt combiné avec un traitement mécanique
  • C25D 21/04 - Enlèvement des gaz ou des vapeurs

96.

Bose-Einstein condensates as a service

      
Numéro d'application 17722350
Numéro de brevet 11935053
Statut Délivré - en vigueur
Date de dépôt 2022-04-17
Date de la première publication 2022-07-28
Date d'octroi 2024-03-19
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Anderson, Dana Zachary
  • Caliga, Seth Charles
  • Majdeteimouri, Farhad

Abrégé

A BEC-station and a cloud-based server cooperate to provide Bose-Einstein condensates as a service (BECaaS). The BEC station serves as a system for implementing “recipes” for producing, manipulating, and/or using cold (<1 mK) a BEC, e.g., of cold Rubidium 87 atoms. The cloud-based server acts as an interface between the station (or stations) and authorized users of account holders. To this end the server hosts an account manager and a session manager. The account manager manages accounts and associated account-based and user-specific permissions that define what actions any given authorized user for an account may perform with respect to a BEC station. The session manager controls (in some cases real-time) interactions between a user and a BEC station, some interactions allowing a user to select a recipe based on results returned earlier in the same session.

Classes IPC  ?

  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives
  • B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en généralAppareils appropriés

97.

Shaken lattice as a service

      
Numéro d'application 17722351
Numéro de brevet 11875226
Statut Délivré - en vigueur
Date de dépôt 2022-04-17
Date de la première publication 2022-07-28
Date d'octroi 2024-01-16
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Anderson, Dana Zachary
  • Caliga, Seth Charles
  • Majdeteimouri, Farhad

Abrégé

A shaken-lattice station and a cloud-based server cooperate to provide shaken lattices as a service (SLaaS). The shaken-lattice station serves as a system for implementing “recipes” for creating and using shaking functions to be applied to light used to trap quantum particles. The cloud-based server acts as an interface between the shaken-lattice station (or stations) and authorized users of account holders. To this end the server hosts an account manager and a session manager. The account manager manages accounts and associated account-based and user-specific permissions that define what actions any given authorized user for an account may perform with respect to a shaken-lattice station. The session manager controls (e.g., in real-time) interactions between a user and a shaken-lattice station, some interactions allowing a user to select a recipe based on results returned earlier in the same session.

Classes IPC  ?

  • G06N 10/40 - Réalisations ou architectures physiques de processeurs ou de composants quantiques pour la manipulation de qubits, p. ex. couplage ou commande de qubit
  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06N 10/60 - Algorithmes quantiques, p. ex. fondés sur l'optimisation quantique ou les transformées quantiques de Fourier ou de Hadamard

98.

Atomtronics as a service

      
Numéro d'application 17722352
Numéro de brevet 11922416
Statut Délivré - en vigueur
Date de dépôt 2022-04-17
Date de la première publication 2022-07-28
Date d'octroi 2024-03-05
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s)
  • Anderson, Dana Zachary
  • Caliga, Seth Charles
  • Majdeteimouri, Farhad

Abrégé

An atomtronics station and a cloud-based server cooperate to provide Bose-Einstein condensates as a service (ATaaS). The atomtronics station serves as a system for implementing “recipes” for producing, manipulating, and/or using atomtronic devices based on cold atoms that are, in some respects, analogous to classical electronic devices based on electricity. The cloud-based server acts as an interface between the station (or stations) and authorized users of account holders. To this end the server hosts an account manager and a session manager. The account manager manages accounts and associated account-based and user-specific permissions that define what actions any given authorized user for an account may perform with respect to an atomtronics station. The session manager controls (in some cases, real-time) interactions between a user and an atomtronics station, some interactions allowing a user to select a recipe based on results returned earlier in the same session.

Classes IPC  ?

  • G06Q 20/10 - Architectures de paiement spécialement adaptées aux systèmes de transfert électronique de fondsArchitectures de paiement spécialement adaptées aux systèmes de banque à domicile
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives
  • G16C 10/00 - Chimie théorique computationnelle, c.-à-d. TIC spécialement adaptées aux aspects théoriques de la chimie quantique, de la mécanique moléculaire, de la dynamique moléculaire ou similaires

99.

Shaken-lattice matter-wave gyro

      
Numéro d'application 16287608
Numéro de brevet 11397085
Statut Délivré - en vigueur
Date de dépôt 2019-02-27
Date de la première publication 2022-07-26
Date d'octroi 2022-07-26
Propriétaire ColdQuanta, Inc. (USA)
Inventeur(s) Anderson, Dana Zachary

Abrégé

A matter-wave gyro with counter-propagating traps uses three-dimensional lattices formed of interference fringes from three pairs of interfering laser beams. Particles, such as neutral atoms, ion, or molecules are cooled to a ground state near absolute zero. The resulting ultra-cold particles are loaded into the lattices. The laser beams used to form the lattices are driven according to functions that cause the lattices to counter-propagate about a closed path (Sagnac loop) N times, where a desired tradeoff between spatial resolution and temporal resolution can be achieved by choosing an appropriate integer value of N. The lattices can be extinguished so that the particles can be imaged to identify an interference pattern. A shift in the interference pattern relative to an interference pattern that would occur with zero angular momentum can be used to measure angular momentum.

Classes IPC  ?

  • G01C 19/00 - GyroscopesDispositifs sensibles à la rotation utilisant des masses vibrantesDispositifs sensibles à la rotation sans masse en mouvementMesure de la vitesse angulaire en utilisant les effets gyroscopiques
  • H05H 3/02 - Production d'un faisceau moléculaire ou atomique, p. ex. d'un faisceau résonnant
  • G01C 19/66 - Gyromètres à laser en anneau

100.

UNDER-RESOLVED QUANTUM-ARRAY STATE MAPPING

      
Numéro d'application US2021057954
Numéro de publication 2022/119685
Statut Délivré - en vigueur
Date de dépôt 2021-11-03
Date de publication 2022-06-09
Propriétaire COLDQUANTA, INC. (USA)
Inventeur(s)
  • Ebert, Matthew
  • Lightman, Martin, Tom

Abrégé

A quantum register can be read out using under-resolved emissions mapping {e.g, imaging). Regions of the quantum register are illuminated concurrently, one array site per region at a time, typically until all sites of each region have been illuminated. A photodetector system then detects for each region whether or not an EMR emission {e.g, due to fluorescence) has occurred in response to illumination of a respective site in that region. The result of the photodetections is a series of emissions maps, e.g., images. The number of emissions maps in the series corresponds to a number of sites per region, while the number of pixels in each image corresponds to a number of regions. A readout result can be based on a time-multiplexed combination of these emissions maps. The emissions maps are under-resolved since the resolution corresponds to the region size rather than the sizes of individual array sites.

Classes IPC  ?

  • G06N 10/00 - Informatique quantique, c.-à-d. traitement de l’information fondé sur des phénomènes de mécanique quantique
  • B82Y 10/00 - Nanotechnologie pour le traitement, le stockage ou la transmission d’informations, p. ex. calcul quantique ou logique à un électron
  • G01N 21/63 - Systèmes dans lesquels le matériau analysé est excité de façon à ce qu'il émette de la lumière ou qu'il produise un changement de la longueur d'onde de la lumière incidente excité optiquement
  1     2        Prochaine page