Terahertz waveguide comprising an outer copper layer laminated with an inner dielectric layer to form a rolled guide tube which is encased by a support tube
H01P 3/16 - Guides d'ondes diélectriques, c. à d. sans conducteur longitudinal
H01P 11/00 - Appareils ou procédés spécialement adaptés à la fabrication de guides d'ondes, résonateurs, lignes ou autres dispositifs du type guide d'ondes
An overmoded dielectric-lined waveguide, particularly for the 0.03 to 3 terahertz frequency range, is disclosed with performance advantages relative to prior dielectric-lined waveguides, cost and size advantages relative to corrugated waveguides, and with coupling, bandwidth, and cost advantages relative to micro-structured-fiber waveguides. It comprises a single-clad flexible microwave laminate rolled into a cylinder with its copper surface outward and its dielectric surface facing inward. The rolled laminate is supported inside a metal tube. The same method of achieving the structure needed for efficient guiding of HE11 mode may be applied to a conical tube to make a low-cost efficient overmoded tapered waveguide transition for the 0.03-3 THz range.
H01P 3/16 - Guides d'ondes diélectriques, c. à d. sans conducteur longitudinal
H01P 11/00 - Appareils ou procédés spécialement adaptés à la fabrication de guides d'ondes, résonateurs, lignes ou autres dispositifs du type guide d'ondes
A large nuclear-powered ship, such as a repurposed aircraft carrier or a large cargo ship, is outfitted with a plurality of large downward-directed subsurface mixer propellers secured on its sides and/or ends. The propellers are positioned below the bottom of the ship and have blade lengths in the range of 10-60 m. They are coupled to the ship's steam turbines by drive shafts and gearing compatible with the required propeller power and rotational rates, typically 25-150 MW per mixer propeller and with blade tip speeds typically around 40 m/s. They produce a large-diameter low-velocity downward plume of surface sea waters below the ship that induces upwelling of cold nutrient-rich deep waters in areas where the cyclone genesis index is high. The downward mass-flow magnitude (typically 3-30 times the flow rate over Niagara Falls, but at only a few m/s) is on the scale needed for a small number of such ships to essentially end cyclone genesis in the Atlantic. At the same time, the induced upwelling of nutrient-rich deep waters is expected to lead to the newly mixed areas becoming highly productive fishing areas.
A tunable millimeter-wave (mmw) DNP probe head is disclosed that is compatible with efficient H/X/Y/e- DNP in samples that may have volume large compared toλ03, where λ0 is the free-space wavelength at the frequency ƒe of the electron paramagnetic resonance (EPR) when placed in an external polarizing field B0, where B0 is typically in the range of 6.5 T to 35 T, corresponding to ƒe in the range of 180-1000 GHz, and corresponding to proton resonance frequency ƒH in the range of 280 MHz to 1500 MHz. The probe head comprises a tune cavity of adjustable volume, a sample cavity that is large compared to the sample wavelength, a tapered conical feed transition filled with a high dielectric material at the small end, and a selectively reflective wall that is substantially reflective of electromagnetic radiation at ƒe but substantially transparent to electromagnetic radiation at ƒH.
G01R 33/28 - Dispositions ou appareils pour la mesure des grandeurs magnétiques faisant intervenir la résonance magnétique - Détails des appareils prévus dans les groupes
G01N 24/08 - Recherche ou analyse des matériaux par l'utilisation de la résonance magnétique nucléaire, de la résonance paramagnétique électronique ou d'autres effets de spin en utilisant la résonance magnétique nucléaire
5.
Stabilizing control of a saturated cold gas stream
2 liquid fraction to an instrument requiring such is disclosed. Pressurized ultra-dry nitrogen gas of a controlled mass-flow rate is cooled inside fine coils bathed in liquid nitrogen to condense it to a vapor fraction less than about 20% and typically under 3%. A second gas stream consisting of predominately nitrogen plus helium, supplied from a controlled pressure, is cooled in a separate set of coils to an exit mean temperature significantly above the temperature of saturated nitrogen vapor in this mixture. The fluid from the first (condensed) mixture is injected into the cooled gas from the second mixture and transferred through a thermally insulated line to the input of the instrument needing a supply of cold gas of a target vapor fraction.
F25B 19/00 - Machines, installations ou systèmes utilisant l'évaporation d'un frigorigène mais sans récupération de vapeur
F17C 13/00 - RÉCIPIENTS POUR CONTENIR OU EMMAGASINER DES GAZ COMPRIMÉS, LIQUÉFIÉS OU SOLIDIFIÉS; GAZOMÈTRES À CAPACITÉ FIXE; REMPLISSAGE OU VIDAGE DE RÉCIPIENTS DE GAZ COMPRIMÉS, LIQUÉFIÉS OU SOLIDIFIÉS - Détails des récipients ou bien du remplissage ou du vidage des récipients
F25D 3/10 - Dispositifs utilisant d'autres agents froids; Dispositifs utilisant des récipients conservant le froid utilisant des gaz liquéfiés, p.ex. de l'air liquide
F25J 1/00 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux
F25J 1/02 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux nécessitant l'emploi d'une réfrigération, p.ex. de l'hélium, de l'hydrogène
F17C 7/04 - Vidage des gaz liquéfiés avec changement d'état, p.ex. vaporisation
F17D 1/04 - Systèmes de canalisation pour gaz ou vapeurs pour la distribution du gaz
F17D 1/08 - Systèmes de canalisation pour liquides ou produits visqueux
An improved method of supplying pressurized cold gas consistently of predominately N2 and He at low flow rate (typically under 1 g/s) with a desired N2 liquid fraction to an instrument requiring such is disclosed. Pressurized ultra-dry nitrogen gas of a controlled mass-flow rate is cooled inside fine coils bathed in liquid nitrogen to condense it to a vapor fraction less than about 20% and typically under 3%. A second gas stream consisting of predominately nitrogen plus helium, supplied from a controlled pressure, is cooled in a separate set of coils to an exit mean temperature significantly above the temperature of saturated nitrogen vapor in this mixture. The fluid from the first (condensed) mixture is injected into the cooled gas from the second mixture and transferred through a thermally insulated line to the input of the instrument needing a supply of cold gas of a target vapor fraction.
F17C 7/04 - Vidage des gaz liquéfiés avec changement d'état, p.ex. vaporisation
F17C 13/00 - RÉCIPIENTS POUR CONTENIR OU EMMAGASINER DES GAZ COMPRIMÉS, LIQUÉFIÉS OU SOLIDIFIÉS; GAZOMÈTRES À CAPACITÉ FIXE; REMPLISSAGE OU VIDAGE DE RÉCIPIENTS DE GAZ COMPRIMÉS, LIQUÉFIÉS OU SOLIDIFIÉS - Détails des récipients ou bien du remplissage ou du vidage des récipients
39 - Services de transport, emballage et entreposage; organisation de voyages
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Providing information on chemical storage of energy via a
website; providing information on chemical storage of energy
derived from wind power via a website. Providing a web site featuring information on chemical
engineering; providing a web site featuring information on
chemical engineering methods for recycling of CO2 into
transportation fuels.
39 - Services de transport, emballage et entreposage; organisation de voyages
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
(1) Providing a web site featuring information on chemical storage of energy; providing a web site featuring information on chemical storage of energy derived from wind power; providing a web site featuring information on chemical engineering; providing a web site featuring information on chemical engineering methods for recycling of CO2 into transportation fuels.
9.
COMPACT, HIGH-EFFECTIVENESS, GAS-TO-GAS COMPOUND RECUPERATOR WITH LIQUID INTERMEDIARY
A liquid-loop compound recuperator is disclosed for high-e heat exchange between a first shell-side fluid stream and a second shell-side fluid stream of similar thermal capacity rates (W/K). The compound recuperator is comprised of at least two fluid-to-liquid (FL) recuperator modules for transfer of heat from a shell-side fluid, usually a gas, to an intermediary tube-side heat transfer liquid (HTL). Each FL module includes a plurality of thermally isolated, serially connected, adjacent exchanger cores inside a pressure vessel. The cores are rows of finned tubes for cross-flow transfer of heat, and they are arranged in series to effectively achieve counterflow exchange between the HTL and the shell-side stream. The HTL may be water, an organic liquid, a molten alloy, or a molten salt.
In a dual-source organic Rankine cycle (DORC), the condensed and slightly sub-cooled working fluid at near ambient temperature (~300 K) and at low-side pressure (0.1 to 0.7 MPa) is (1) pumped to high-side pressure (0.5-5 MPa), (2) pre-heated in a low-temperature (LT) recuperator, (3) boiled using a low-grade heat source, (4) super-heated in a high-temperature (HT) recuperator to a temperature close to the expander turbine exhaust temperature using this exhaust vapor enthalpy, (5) further super-heated to the turbine inlet temperature (TIT) using a mid-grade heat source, (6) expanded through a turbine expander to the low-side pressure, (7) cooled through the HT recuperator, (8) cooled through the LT recuperator, (9) mostly liquefied and slightly subcooled in a condenser, and (10) the condensed portion is returned to the pump to repeat this cycle.
F02B 39/00 - MOTEURS À COMBUSTION INTERNE À PISTONS; MOTEURS À COMBUSTION EN GÉNÉRAL - Parties constitutives, détails ou accessoires non couverts par les groupes , et relatifs aux pompes d'alimentation ou de balayage entraînées
F02B 37/00 - Moteurs caractérisés par l'utilisation de pompes entraînées au moins temporairement par les gaz d'échappement
11.
HYDROCARBON AND ALCOHOL FUELS FROM VARIABLE, RENEWABLE ENERGY AT VERY HIGH EFFICIENCY
A Renewable Fischer Tropsch Synthesis (RFTS) process produces hydrocarbons and alcohol fuels from wind energy, waste CO2 and water. The process includes (A) electrolyzing water to generate hydrogen and oxygen, (B) generating syngas in a reverse water gas shift (RWGS) reactor, (C) driving the RWGS reaction to the right by condensing water from the RWGS products and separating CO using a CuAlCl4-aromatic complexing method, (D) using a compressor with variable stator nozzles, (E) carrying out the FTS reactions in a high-temperature multi-tubular reactor, (F) separating the FTS products using high-pressure fractional condensation, (G) separating CO2 from product streams for recycling through the RWGS reactor, and (H) using control methods to maintain temperatures of the reactors, electrolyzer, and condensers at optima that are functions of the flow rate. The RFTS process may also include heat engines, a refrigeration cycle utilizing compressed oxygen, and a dual-source organic Rankine cycle.
C10L 1/18 - Composés organiques contenant de l'oxygène
C07C 1/04 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir d'oxydes de carbone à partir de monoxyde de carbone avec de l'hydrogène
C07C 27/06 - Procédés impliquant la production simultanée de plusieurs classes de composés contenant de l'oxygène par réduction de composés oxygénés par hydrogénation d'oxydes de carbone
C10G 2/00 - Production de mélanges liquides d'hydrocarbures de composition non définie à partir d'oxydes de carbone
12.
IMPROVED NMR CRYOMAS PROBE FOR HIGH-FIELD WIDE-BORE MAGNETS
All critical circuit components, including the sample coils, are located along with the spinner assembly in a region that may be evacuated to high vacuum for thermal insulation and high-voltage operation. A hermetically sealed spinner assembly simultaneously satisfies the requirements of hermeticity, low total emissivity, rf compatibility, spinning performance, magnetic compatibility, and high filling factor by utilizing metal construction except for the central region near the rf sample coils. Hence, it is possible to maintain high vacuum in the region external to the MAS spinner assembly even over a broad range of bearing and drive gas temperatures. A bundle of optical fibers is provided for tachometry for spin rates up to 60 kHz. The use of alumina disc capacitors allows the noise contributions from the most critical capacitors to be reduced to a minor fraction of the total and simplifies high voltage operation.
G01R 33/44 - Dispositions ou appareils pour la mesure des grandeurs magnétiques faisant intervenir la résonance magnétique utilisant la résonance magnétique nucléaire [RMN]
G01V 3/00 - Prospection ou détection électrique ou magnétique; Mesure des caractéristiques du champ magnétique de la terre, p.ex. de la déclinaison ou de la déviation
13.
NMR CRYOMAS PROBE FOR HIGH-FIELD WIDE-BORE MAGNETS
An MAS probe is disclosed for obtaining a substantial improvement in signal to noise (S/N) in triple-resonance high-resolution (HR) magic-angle-spinning (MAS) NMR of samples (20) near room temperature (RT) in high-field magnets where the magnet's RT shim bore is greater than 60 mm All critical circuit components, including the sample coils (24), are located along with the spinner assembly (13) in a thermally insulated cold zone (38) pressurized with helium gas The spinner assembly (13) attaches to a sealed, curved, rotor- loading tube (30) to permit automatic sample (20)change, and it is surrounded by a partially insulated jacket (40) cooled with a cryogenic fluid, generally nitrogen gas The MAS probe is also compatible with magic angle gradients, variable temperature operation, field locking, and commonly available closed-cycle cold fingers
G01V 3/00 - Prospection ou détection électrique ou magnétique; Mesure des caractéristiques du champ magnétique de la terre, p.ex. de la déclinaison ou de la déviation
14.
NMR MAS probe with cryogenically cooled critical circuit components
A MAS probe offers a substantial improvement in signal to noise (S/N) in triple-resonance high-resolution (HR) magic-angle-spinning (MAS) NMR of samples near room temperature (RT) in high field magnets, especially where the RT shim bore is less than 55 mm. Critical circuit components other than the sample coils, including both high-power capacitors and inductors for one or more channels are located in a small, thermally insulated, cold zone immediately below the sample spinner assembly. Cooling these components to 100 K allows their thermal noise power to be conveniently reduced by a factor of three or more. Variable capacitors for fine tuning are located in an RT tuning zone below the cold zone. The circuit is designed such that the currents, voltages, and standing wave ratio (SWR) in circuit tuning elements in the RT tuning zone are relatively low, so rf losses and noise contributions below the cold zone may be only a few percent. The MAS probe is also compatible with magic angle gradients, automatic sample change, multi-nuclear tuning, variable temperature operation, field locking, and optical spin rate detection.
G01V 3/00 - Prospection ou détection électrique ou magnétique; Mesure des caractéristiques du champ magnétique de la terre, p.ex. de la déclinaison ou de la déviation
An improved axial gas bearing for a gas-driven NMR MAS sample rotor is disclosed that utilizes inward flow with a low rotational component over a rotor conical end. A conical flow region is formed between the rotor conical end and a conical stator bearing surface such that the included angle defining the stator surface is not less than the included angle defining the rotor conical end. Gas is injected radially inward with a significant axial rearward component from a number of small holes at high velocity from the periphery into the conical flow region. Compared to the radial velocity components, the tangential flow components of the injected gas are small and preferably opposed to the direction of the rotor rotation. The high and accelerating negative radial velocities may result in significant Bernoulli effect, such that the mean axial pressure over the conical rotor end may be less than atmospheric pressure for a given axial clearance, but as the clearance decreases, the hydrostatic effects exceed the Bernoulli effects and the mean axial pressure over the conical rotor end may then exceed atmospheric pressure by a substantial amount. Thus, a self-stabilizing axial bearing is formed with improved stability and stiffness for rotor surface speeds up to at least 80% of the speed of sound. Motive power required to spin the rotor may be provided by a radial-inflow microturbine at the opposite end of the rotor in a way that is readily compatible with automatic sample change.
G01V 3/00 - Prospection ou détection électrique ou magnétique; Mesure des caractéristiques du champ magnétique de la terre, p.ex. de la déclinaison ou de la déviation
09 - Appareils et instruments scientifiques et électriques
Produits et services
Electrical and scientific apparatus, namely, magic angle spinning probes, high-resolution nuclear magnetic resonance probes, [ double rotation probes, ] variable angle spinning probes, switched angle spinning probes, [ dynamic angle spinning probes, ] radio frequency coils for imaging, gradient coils, extended temperature probes, triple-tuned probes, wideline probes, spin rate detection and control equipment for nuclear magnetic resonance, temperature control equipment for nuclear magnetic resonance, [ radio frequency equipment for nuclear magnetic resonance, ] [susceptibilty-matched sample plugs,] and spinner equipment for nuclear magnetic resonance