A NOR flash memory array is disclosed, comprising: multiple cells organized in rows and columns, each cell comprising a channel region, a charge storing material, a control gate, a source region and a drain region, the cells along a predefined direction being arranged in cell pairs such that each cell pair shares a common source region that is encircled by a source halo implant region. The source halo implant region has the same conductivity type as the substrate, and the source halo implant region has a higher impurity concentration than a drain side of the channel region. The invention enhances the ChiTel programming efficiency and improves the short channel margins for the gate lengths of memory cells less than 100 nm in NOR flash memory array.
H10B 41/27 - Dispositifs de mémoire morte reprogrammable électriquement [EEPROM] comprenant des grilles flottantes caractérisés par les agencements tridimensionnels, p. ex. avec des cellules à des niveaux différents de hauteur la région de source et la région de drain étant à différents niveaux, p. ex. avec des canaux inclinés les canaux comprenant des parties verticales, p. ex. des canaux en forme de U
G11C 16/04 - Mémoires mortes programmables effaçables programmables électriquement utilisant des transistors à seuil variable, p. ex. FAMOS
H10B 41/10 - Dispositifs de mémoire morte reprogrammable électriquement [EEPROM] comprenant des grilles flottantes caractérisés par la configuration vue du dessus
H10B 43/10 - Dispositifs EEPROM avec des isolants de grille à piégeage de charge caractérisés par la configuration vue du dessus
H10B 43/27 - Dispositifs EEPROM avec des isolants de grille à piégeage de charge caractérisés par les agencements tridimensionnels, p. ex. avec des cellules à des niveaux différents de hauteur la région de source et la région de drain étant à différents niveaux, p. ex. avec des canaux inclinés les canaux comprenant des parties verticales, p. ex. des canaux en forme de U
2.
FOUR-TRANSISTOR STATIC RANDOM ACCESS MEMORY CELL WITH ENHANCED DATA RETENTION
A SRAM cell comprising two PMOS transistors and two NMOS transistors is fabricated with CMOS process technology. The PMOS transistors are coupled to a supply voltage rail, a first storage node and a second storage node. The NMOS transistors are responsive to a word line and coupled to the first and the second storage nodes and a bit line pair. When the two NMOS transistors are turned off, a floating voltage at the first storage node rises from a ground voltage and stabilizes at a steady-state voltage Vstdf and a difference voltage (VDD−Vstdf) between the first and the second storage nodes is greater than a predefined voltage so that a data bit stored in the SRAM cell is read out correctly in a following data read period, where 0
A floating-point in-memory multiplication device achieving one-step floating-point multiplication operation is disclosed. The device performs multiplication on a multiplicand and a multiplier and generates a first product. Each of the multiplicand, the multiplier and the first product is a binary floating-point number in IEEE 754 format and contains a sign bit, a q-bit exponent and a (p−1)-bit significand. The device comprises a XOR gate device, a decoder circuit, an adder circuit, a binary in-memory multiplier circuit and an encoder circuit. The XOR gate device receives the sign bits of the multiplicand and the multiplier to generate a sign bit of the first product. The adder circuit adds up the q-bit exponents of the multiplicand and the multiplier to generate a (q+1)-bit temporary exponent. The binary in-memory multiplier circuit performs multiplication on a first and a second p-bit significands to generate a 2p-bit second product.
G06F 5/01 - Procédés ou dispositions pour la conversion de données, sans modification de l'ordre ou du contenu des données maniées pour le décalage, p. ex. la justification, le changement d'échelle, la normalisation
H03K 19/21 - Circuits OU EXCLUSIF, c.-à-d. donnant un signal de sortie si un signal n'existe qu'à une seule entréeCircuits à COÏNCIDENCES, c.-à-d. ne donnant un signal de sortie que si tous les signaux d'entrée sont identiques
4.
NEURON METAL OXIDE SEMICONDUCTOR DEVICES AND CIRCUITS FABRICATED WITH CMOS LOGIC PROCESS TECHNOLOGY
The neuron Logic Gate Metal-Oxide-Semiconductor (νLGMOS) circuits to mimic neurons' “integrate-and-fire” behaviors in biological neural network system can be fabricated with industry Complementary Metal-Oxide Semiconductor (CMOS) logic process technology, with which digital computational circuits are fabricated. A processing system having analog νLGMOS circuits, conversion circuitry and digital circuits optimized for power and cost for varieties of applications can be then fabricated with the same CMOS logic process technology for IC chips. Meanwhile analog νLGMOS circuits inspired from biological neural network systems can be simulated, designed, and fabricated for IC chips for the applications of biomedical fields.
A memory device is disclosed, comprising a 4T-SRAM cell and a read circuit. The 4T-SRAM cell comprising two P-type MOSFET devices for a data bit storage and two N-type MOSFET for accessing switches has benefits of less numbers of MOSFET devices for smaller cell size and low leakage current than the conventional 6T-SRAM cell. The read circuit comprises a latch and a discharge device. The latch with two output nodes is coupled between a supply voltage rail and a ground voltage rail. The discharge device is coupled to the two output nodes, a bit line pair and the ground voltage rail. Since one of two storage nodes for the 4T-SRAM cell is floating, the stored data in the 4T-SRAM cell is vulnerable for conventional read operations. The read circuit of the invention resolves the vulnerability issue of the 4T-SRAM cell.
G11C 11/412 - Mémoires numériques caractérisées par l'utilisation d'éléments d'emmagasinage électriques ou magnétiques particuliersÉléments d'emmagasinage correspondants utilisant des éléments électriques utilisant des dispositifs à semi-conducteurs utilisant des transistors formant des cellules avec réaction positive, c.-à-d. des cellules ne nécessitant pas de rafraîchissement ou de régénération de la charge, p. ex. multivibrateur bistable, déclencheur de Schmitt utilisant uniquement des transistors à effet de champ
2, where F is the minimum feature size of a process technology node below 100 nm. In comparison with conventional NOR flash, the SSC NOR flash improves memory density resulting in cost reduction per bit storage. While on the benefit of increasing memory density and storage cost reduction, the invention preserves the typical NOR-type flash advantages over NAND flash on fast nanosecond-range access time, low operating voltages, and high reliability.
The multi-digit binary in-memory multiplication devices are disclosed. The multi-digit binary in-memory multiplication devices of the invention can dramatically reduce the operational steps in comparison with the conventional binary multiplier device. In one embodiment with the expense of more hardware, the in-memory multiplication device can achieve one single step operation. Consequently, the multi-digit binary in-memory multiplication device can improve the computation efficiency and save the computation power by eliminating the data transportations between Arithmetic Logic Unit (ALU), registers, and memory units.
G06F 7/40 - Méthodes ou dispositions pour effectuer des calculs en utilisant exclusivement une représentation numérique codée, p. ex. en utilisant une représentation binaire, ternaire, décimale utilisant des dispositifs établissant un contact, p. ex. relais électromagnétique
n in-memory adder device can improve the computation efficiency and save the computation power by eliminating the data transportations between Arithmetic Logic Unit (ALU), registers, and memory units.
G06F 7/507 - AdditionSoustraction en mode parallèle binaire, c.-à-d. ayant un circuit de maniement de chiffre différent pour chaque position avec génération simultanée de retenue pour plusieurs étages ou propagation simultanée de retenue sur plusieurs étages utilisant la sélection entre deux valeurs de retenue ou de somme calculées de façon conditionnelle
G11C 8/08 - Circuits de commande de lignes de mots, p. ex. circuits d'attaque, de puissance, de tirage vers le haut, d'abaissement, circuits de précharge, pour lignes de mots
An in-memory digital processor, Perpetual Digital Perceptron (PDP), is disclosed. The digital in-memory processor of the invention processes the input digital information according to a database of the digital content data stored/hardwired in the Content Read Only Memory (CROM) array and outputs the correspondent digital response data stored/hardwired in the Response Read Only Memory (RROM) array. The PDP is the hardwired digital in-memory processor without re-configuration capability and similar to the instinct functions of biological hardwired brains without re-shaping their neuromorphic structures from training and learning.
G11C 8/08 - Circuits de commande de lignes de mots, p. ex. circuits d'attaque, de puissance, de tirage vers le haut, d'abaissement, circuits de précharge, pour lignes de mots
G11C 15/04 - Mémoires numériques dans lesquelles l'information, comportant une ou plusieurs parties caractéristiques, est écrite dans la mémoire et dans lesquelles l'information est lue au moyen de la recherche de l'une ou plusieurs de ces parties caractéristiques, c.-à-d. mémoires associatives ou mémoires adressables par leur contenu utilisant des éléments semi-conducteurs
G06N 3/063 - Réalisation physique, c.-à-d. mise en œuvre matérielle de réseaux neuronaux, de neurones ou de parties de neurone utilisant des moyens électroniques
A dynamic digital perceptron device is disclosed. The dynamic digital perceptron device of the invention comprises a volatile content memory array, a detection and driver circuit and a volatile response memory array. The dynamic digital perceptron device processes input digital information according to a database of the digital content data stored in the volatile content memory array and outputs the correspondent digital data stored in the volatile response memory array by the detection and driver circuit. Moreover, the volatile content memory array and the volatile response memory array in the dynamic digital perceptron device are constructed by the latch-types of memory cells to handle the rapid and frequent changing digital processing environments.
G11C 15/04 - Mémoires numériques dans lesquelles l'information, comportant une ou plusieurs parties caractéristiques, est écrite dans la mémoire et dans lesquelles l'information est lue au moyen de la recherche de l'une ou plusieurs de ces parties caractéristiques, c.-à-d. mémoires associatives ou mémoires adressables par leur contenu utilisant des éléments semi-conducteurs
G06N 3/063 - Réalisation physique, c.-à-d. mise en œuvre matérielle de réseaux neuronaux, de neurones ou de parties de neurone utilisant des moyens électroniques
G11C 11/54 - Mémoires numériques caractérisées par l'utilisation d'éléments d'emmagasinage électriques ou magnétiques particuliersÉléments d'emmagasinage correspondants utilisant des éléments simulateurs de cellules biologiques, p. ex. neurone
In-memory arithmetic processors for the “n-bit” by “n-bit” multiplication, the “n-bit” by “n-bit” addition, and the “n-bit” by “n-bit” subtraction operations are disclosed. The in-memory arithmetic processors of the invention can obtain the operational resultant integer in the binary format for two inputted integers represented by two “n-bit” binary codes in one-step processing with no sequential multiple-step operations as for the conventional arithmetic binary processors. The in-memory arithmetic processors are implemented by a 2-dimensional memory array with X and Y decoding for the two inputted operational integers in the arithmetic binary operations.
For erasing four-terminal semiconductor Non-Volatile Memory (NVM) devices, we apply a high positive voltage bias to the control gate with source, substrate and drain electrodes tied to the ground voltage for moving out stored charges in the charge storage material to the control gate. For improving erasing efficiency and NVM device endurance life by lowering applied voltage biases and reducing the applied voltage time durations, we engineer the lateral impurity profile of the control gate near dielectric interface such that tunneling occurs on the small lateral region of the control gate near the dielectric interface. We also apply the non-uniform thickness of coupling dielectric between the control gate and the storage material for the NVM device such that the tunneling for the erase operation occurs within the small thin dielectric areas, where the electrical field in thin dielectric is the strongest for tunneling erase operation.
H01L 27/00 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun
H01L 27/11558 - Mémoires mortes programmables électriquement; Procédés de fabrication à étapes multiples de ces dispositifs avec grilles flottantes la grille de commande étant une région dopée, p.ex. cellules de mémoire en couche unique de polysilicium
H01L 27/11526 - Mémoires mortes programmables électriquement; Procédés de fabrication à étapes multiples de ces dispositifs avec grilles flottantes caractérisées par la région de circuit périphérique
G11C 16/04 - Mémoires mortes programmables effaçables programmables électriquement utilisant des transistors à seuil variable, p. ex. FAMOS
H01L 27/11573 - Mémoires mortes programmables électriquement; Procédés de fabrication à étapes multiples de ces dispositifs avec isolateurs de grille à piégeage de charge, p.ex. MNOS ou NROM caractérisées par la région de circuit périphérique
Inspired by the processing methods of biologic brains, we construct a network of multiple configurable non-volatile memory arrays connected with bus-lines as a neuromorphic code processor for code processing. In contrast to the Von-Neumann computing architectures applying the multiple computations for code vector manipulations, the neuromorphic code processor of the invention processes codes according to their configured codes stored in the non-volatile memory arrays. Similar to the brain processor, the neuromorphic code processor applies the one-step feed-forward processing in parallel resulting in a dramatic power reduction compared with the computational methods in the conventional computer processors.
G06F 12/06 - Adressage d'un bloc physique de transfert, p. ex. par adresse de base, adressage de modules, extension de l'espace d'adresse, spécialisation de mémoire
2 for the LGNVM NOR flash arrays can be achieved by this method, where F is the minimal feature size for a specific CMOS logic process technology node.
G11C 11/34 - Mémoires numériques caractérisées par l'utilisation d'éléments d'emmagasinage électriques ou magnétiques particuliersÉléments d'emmagasinage correspondants utilisant des éléments électriques utilisant des dispositifs à semi-conducteurs
G11C 16/04 - Mémoires mortes programmables effaçables programmables électriquement utilisant des transistors à seuil variable, p. ex. FAMOS
H01L 27/11558 - Mémoires mortes programmables électriquement; Procédés de fabrication à étapes multiples de ces dispositifs avec grilles flottantes la grille de commande étant une région dopée, p.ex. cellules de mémoire en couche unique de polysilicium
G11C 16/10 - Circuits de programmation ou d'entrée de données
15.
Ultra-low power programming method for N-channel semiconductor non-volatile memory
DB relative to the substrate to facilitate the valence band electrons in the P-type substrate to tunnel to the conducting band of the N-type drain electrode. A positive high gate voltage pulse is then applied to the gate electrode of the N-channel semiconductor NVM to collect the surface energetic electrons toward the charge storage material.
G11C 11/34 - Mémoires numériques caractérisées par l'utilisation d'éléments d'emmagasinage électriques ou magnétiques particuliersÉléments d'emmagasinage correspondants utilisant des éléments électriques utilisant des dispositifs à semi-conducteurs
G11C 16/10 - Circuits de programmation ou d'entrée de données
G11C 16/04 - Mémoires mortes programmables effaçables programmables électriquement utilisant des transistors à seuil variable, p. ex. FAMOS
16.
SCALABLE GATE LOGIC NON-VOLATILE MEMORY CELLS AND ARRAYS
Scalable Gate Logic Non-Volatile Memory (SGLNVM) devices fabricated with the conventional CMOS process is disclosed. Floating gates of SGLNVM cell with the minimal length and width of the logic gate devices form floating gate Metal-Oxide-Semiconductor Field Effect Transistor. The floating gates with the minimal gate length extend over silicon active areas to capacitively couple control gates embedded in silicon substrate (well) through an insulation dielectric. The embedded control gate is formed by a shallow semiconductor type opposite to the type of the silicon substrate or well. Plurality of SGLNVM devices are configured into a NOR-type flash array where a pair of SGLNVM devices share a common source electrode connected to a common ground line with two drain electrodes connected to two separate bitlines. The pairs of the NOR-type SGLNVM cells are physically separated and electrically isolated by dummy floating gates to minimize cell sizes.
A rechargeable battery is disclosed. The rechargeable battery of the invention includes a high density capacitor and an integrated circuit. The high density capacitor is connected between a ground terminal and a first node carrying a first voltage. The integrated circuit includes a band gap circuit, a first detecting unit, a voltage divider, a second detecting unit and at least one low dropout voltage regulator. The first detecting unit measures the first voltage and determines whether to apply an input charging voltage to the high density capacitor. The second detecting unit measures the second voltage according to the band gap voltage and determines whether to connect a third node to the first node. Each low dropout voltage regulator is connected to the third node and generates a specified voltage output and a specified current output according to the band gap voltage and the first voltage.
Dual Conducting Floating Spacer Metal Oxide Semiconductor Field Effect Transistors (DCFS MOSFETs) and methods for fabricate them using a process that is compatible with forming conventional MOSFETs are disclosed. A DCFS MOSFET can provide multi-bit storage in a single Non-Volatile Memory (NVM) memory cell. Like a typical MOSFET, a DCFS MOSFET includes a control gate electrode on top of a gate dielectric-silicon substrate, thereby forming a main channel of the device. Two electrically isolated conductor spacers are provided on both sides of the control gate and partially overlap two source/drain diffusion areas, which are doped to an opposite type to the conductivity type of the substrate semiconductor. The DCFS MOSFET becomes conducting when a voltage that exceeds a threshold is applied at the control gate and is coupled through the corresponding conducting floating spacer to generate an electrical field strong enough to invert the carriers near the source junction. By storing charge in the two independent conducting floating spacers, DCFS MOSFET can have two independent sets of threshold voltages associated with the source junctions.