Method and system are provided for reducing the AWV table size for phased-array antenna. In one novel aspect, the AWV table is decomposed to a combination of a first AWV table and a second AWV table, with a combined size smaller than the size of the AWV table. In one novel aspect, a group of decomposable AWVs are identified and each decomposed into a decomposed first AWVs and a decomposed second AWVs. In one embodiment, the decomposable weights W that are decomposed into Wh being a function of both elevation θ and azimuth (φ and Wv being a function of elevation θ only. In one novel aspect, the AWV table for a phased-array antenna with N antenna elements with Mv weights in a vertical direction and Mh weights in a horizontal direction is decomposed into a first AWV table and a second AWV table with a combined size of N*(Mv+Mh).
H01Q 3/36 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la phase relative ou l’amplitude relative et l’énergie d’excitation entre plusieurs éléments rayonnants actifsDispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la distribution de l’énergie à travers une ouverture rayonnante faisant varier la phase par des moyens électriques avec des déphaseurs variables
2.
SYSTEM AND METHOD FOR EFFICIENT ANTENNA WEIGHT VECTOR TABLES WITHIN PHASED-ARRAY ANTENNAS
The method and system are provided for reducing the AWV table size for phased-array antenna, the AWV table is decomposed to a combination of a first AWV table and a second AWV table, with a combined size smaller than the size of the AWV table, a group of decomposable AWVs are identified and each decomposed into a decomposed first AWVs and a decomposed second AWVs, the decomposable weights W that are decomposed into Wh are a function of both elevation θ and Wv is a function of elevation θ and azimuth φ and Wv is a function of elevation θ only, and the AWV table for a phased-array antenna with N antenna elements with Mv weights in a vertical direction and Mh weights in a horizontal direction is decomposed into a first AWV table and a second AWV table with a combined size of N*(Mv+Mh).
H01Q 3/26 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la phase relative ou l’amplitude relative et l’énergie d’excitation entre plusieurs éléments rayonnants actifsDispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la distribution de l’énergie à travers une ouverture rayonnante
H01Q 3/34 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la phase relative ou l’amplitude relative et l’énergie d’excitation entre plusieurs éléments rayonnants actifsDispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la distribution de l’énergie à travers une ouverture rayonnante faisant varier la phase par des moyens électriques
H04B 7/06 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
A wideband power amplifier (PA) linearization technique is proposed. A current interpolation technique is proposed to linearize power amplifiers over a wide bandwidth. The wideband power amplifier linearization technique employs a novel transconductance Gm linearizer using a current interpolation technique that achieves improvement in the third order intermodulation over wide bandwidth for a sub-micron CMOS differential power amplifier. By using a small amount of compensating bias into an opposite phase differential pair, linearization over wide bandwidth is achieved and can be optimized by adjusting the compensating bias.
The examples set forth herein involve inkjet printing one or more layers on a multilayer ceramic base. In some examples, the multilayer ceramic base is fired in a first firing process before one or more inkjet printed layers are printed on the multilayer ceramic base to form a combination package comprising the multilayer ceramic base and the one or more inkjet printed layers. In further examples, the combination package is fired in a second firing process.
The examples set forth herein involve inkjet printing one or more layers on a multilayer ceramic base. In some examples, the multilayer ceramic base is fired in a first firing process before one or more inkjet printed layers are printed on the multilayer ceramic base to form a combination package comprising the multilayer ceramic base and the one or more inkjet printed layers. In further examples, the combination package is fired in a second firing process.
H01L 21/48 - Fabrication ou traitement de parties, p. ex. de conteneurs, avant l'assemblage des dispositifs, en utilisant des procédés non couverts par l'un uniquement des groupes ou
An antenna apparatus includes an antenna integrated with a filter. The antenna apparatus includes a plurality of resonators where at least some of the resonators are each enclosed in a metal cavity and at least one resonator is exposed to free space to form a radiator element. The antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the radiator element and the position of the radiator element within the antenna apparatus.
Radio Frequency (RF) circuit (amplifiers, mixer, etc.) design with RFIC, e.g., implemented in CMOS, CaAs, SiGe, or other silicon processes, suffers performance variations (gain phase, frequency, bandwidth, nonlinearity) due to wafer process variations, temperature changes, and supply voltage changes, and random variations. In this invention, methods are proposed to precisely calibrate the bias current of all active devices in the system, and to precisely calibrate the gain of individual path leading to each amplifiers such that the same Pout is achieved for all antenna elements in the system.
H04B 17/11 - SurveillanceTests d’émetteurs pour l’étalonnage
H04B 1/00 - Détails des systèmes de transmission, non couverts par l'un des groupes Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
Radio Frequency (RF) circuit (amplifiers, mixer, etc.) design with RFIC, e.g., implemented in CMOS, CaAs, SiGe, or other silicon processes, suffers performance variations (gain phase, frequency, bandwidth, nonlinearity) due to wafer process variations, temperature changes, and supply voltage changes, and random variations. In this invention, methods are proposed to precisely calibrate the bias current of all active devices in the system, and to precisely calibrate the gain of individual path leading to each amplifiers such that the same Pout is achieved for all antenna elements in the system.
H01Q 3/34 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la phase relative ou l’amplitude relative et l’énergie d’excitation entre plusieurs éléments rayonnants actifsDispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la distribution de l’énergie à travers une ouverture rayonnante faisant varier la phase par des moyens électriques
An antenna apparatus includes an antenna integrated with a filter. The antenna apparatus includes a plurality of resonators where at least some of the resonators are each enclosed in a metal cavity and at least one resonator is exposed to free space to form a radiator element. The antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the radiator element and the position of the radiator element within the antenna apparatus.
An antenna apparatus includes an antenna integrated with a filter. The antenna apparatus includes a plurality of resonators where at least some of the resonators are each enclosed in a metal cavity and at least one resonator is exposed to free space to form a radiator element. The antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the radiator element and the position of the radiator element within the antenna apparatus.
A phased array antenna includes multiple antenna elements where each antenna element is an antenna apparatus that includes an antenna integrated with a filter. Each antenna apparatus includes a plurality of resonators where at least some of the resonators are each enclosed in a metal cavity and at least one resonator is exposed to free space to form a radiator element. Each antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the radiator element and the position of the radiator element within the antenna apparatus. The scan volume of the phased array antenna is dependent on at least one physical dimension of the filter of the antenna apparatus.
A phased array antenna includes multiple antenna elements where each antenna element is an antenna apparatus that includes an antenna integrated with a filter. Each antenna apparatus includes a plurality of resonators where at least some of the resonators are each enclosed in a metal cavity and at least one resonator is exposed to free space to form a radiator element. Each antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the radiator element and the position of the radiator element within the antenna apparatus. The scan volume of the phased array antenna is dependent on at least one physical dimension of the filter of the antenna apparatus.
A ceramic feedthrough assembly has a feedthrough interface sleeve brazed to a ceramic feedthrough body and a housing interface sleeve brazed to the feedthrough interface sleeve. The housing interface sleeve is configured to be integrated within an electronic device and welded to a metal housing to form a hermetically sealed electronic device. The ceramic feedthrough has at least one embedded electrical conductor extending from a first location on the ceramic feedthrough body to a second location on the ceramic feedthrough body. The feedthrough interface sleeve is positioned around the ceramic feedthrough body between the first location and the second location and brazed to the wrap-around metallization. When the metal housing is welded to the housing interface sleeve, the ceramic feedthrough assembly facilitates connection to an electronic circuit hermetically sealed in the electronic device with the metal housing.
A ceramic feedthrough assembly has a feedthrough interface sleeve brazed to a ceramic feedthrough body and a housing interface sleeve brazed to the feedthrough interface sleeve. The housing interface sleeve is configured to be integrated within an electronic device and welded to a metal housing to form a hermetically sealed electronic device. The ceramic feedthrough has at least one embedded electrical conductor extending from a first location on the ceramic feedthrough body to a second location on the ceramic feedthrough body. The feedthrough interface sleeve is positioned around the ceramic feedthrough body between the first location and the second location and brazed to the wrap-around metallization. When the metal housing is welded to the housing interface sleeve, the ceramic feedthrough assembly facilitates connection to an electronic circuit hermetically sealed in the electronic device with the metal housing.
A power amplifier (PA) linearization technique with a wider linearized power range is proposed. Proposed two types of linearizers with cross-coupled PMOS and NMOS configuration. The idea is to use a complimentary device compared with the PA core device, and the behavior of Cgs of the linearizer are also complimentary to the PA itself. In the other words, the overall Cgs of the PA with the linearizer would be constant without leading to non-linear waveform. Both linearizers can effectively compensate not only AMAM but also AMPM. First type of linearizer can be integrated with PA cores, and second type of linearizer can be used in the IMN. Both linearizers have effective IM3 reduction in different corner.
H03F 1/32 - Modifications des amplificateurs pour réduire la distorsion non linéaire
H03F 1/56 - Modifications des impédances d'entrée ou de sortie, non prévues ailleurs
H03F 3/21 - Amplificateurs de puissance, p. ex. amplificateurs de classe B, amplificateur de classe C comportant uniquement des dispositifs à semi-conducteurs
A wideband power amplifier (PA) linearization technique is proposed. A current interpolation technique is proposed to linearize power amplifiers over a wide bandwidth. The wideband power amplifier linearization technique employs a novel transconductance Gm linearizer using a current interpolation technique that achieves improvement in the third order intermodulation over wide bandwidth for a sub-micron CMOS differential power amplifier. By using a small amount of compensating bias into an opposite phase differential pair, linearization over wide bandwidth is achieved and can be optimized by adjusting the compensating bias.
H03F 1/48 - Modifications des amplificateurs pour augmenter la bande passante des amplificateurs apériodiques
H03F 1/32 - Modifications des amplificateurs pour réduire la distorsion non linéaire
H03F 1/56 - Modifications des impédances d'entrée ou de sortie, non prévues ailleurs
H03F 1/02 - Modifications des amplificateurs pour augmenter leur rendement, p. ex. étages classe A à pente glissante, utilisation d'une oscillation auxiliaire
H03F 1/30 - Modifications des amplificateurs pour réduire l'influence des variations de la température ou de la tension d'alimentation
17.
PERIPHERAL FOR AMPLIFIER LINEARIZATION WITH COMPLEMENTARY COMPENSATION
A power amplifier (PA) linearization technique with a wider linearized power range is proposed. Proposed two types of linearizers with cross-coupled PMOS and NMOS configuration. The idea is to use a complimentary device compared with the PA core device, and the behavior of Cgs of the linearizer are also complimentary to the PA itself. In other words, the overall Cgs of the PA with the linearizer would be constant without leading to non-linear waveform. Both linearizers can effectively compensate not only AMAM but also AMPM. First type of linearizer can be integrated with PA cores, and second type of linearizer can be used in the IMN. Both linearizers have effective IM3 reduction in different corners.
A wideband power amplifier (PA) linearization technique is proposed. A current interpolation technique is proposed to linearize power amplifiers over a wide bandwidth. The wideband power amplifier linearization technique employs a novel transconductance Gm linearizer using a current interpolation technique that achieves improvement in the third order intermodulation over wide bandwidth for a sub-micron CMOS differential power amplifier. By using a small amount of compensating bias into an opposite phase differential pair, linearization over wide bandwidth is achieved and can be optimized by adjusting the compensating bias.
San Diego State University Research Foundation (USA)
Kyocera International, Inc. (USA)
Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V. (Allemagne)
Inventeur(s)
Engin, Arif Ege
Aguirre, Gerardo
Lang, Klaus-Dieter
Ndip, Ivan
Abrégé
Embodiments described herein are directed to methods and apparatus for power distribution. The apparatus can include a power distribution network for a plurality of integrated circuits (IC). According to embodiments, the power distribution network includes a plurality of overlapping power/ground (PG) plane segments and one or more non-overlapping PG (no-PG) plane segments. Each overlapping-PG plane segment is separated from another overlapping-PG plane segment by at least one no-PG plane segment. The no-PG plane segments can include at least one of a multilayered power (P) plane segment with no ground reference of any PG plane and a multilayered ground (G) plane segment with no power reference of any PG plane.
A phased array antenna includes multiple antenna elements where each antenna element is an antenna apparatus that includes an antenna integrated with a filter. Each antenna apparatus includes a plurality of resonators where at least some of the resonators are each enclosed in a metal cavity and at least one resonator is exposed to free space to form a radiator element. Each antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the radiator element and the position of the radiator element within the antenna apparatus. The scan volume of the phased array antenna is dependent on at least one physical dimension of the filter of the antenna apparatus.
An antenna apparatus includes an antenna integrated with a filter. The antenna apparatus includes a plurality of resonators where at least some of the resonators are each enclosed in a metal cavity and at least one resonator is exposed to free space to form a radiator element. The antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the radiator element and the position of the radiator element within the antenna apparatus.
An antenna apparatus includes an antenna integrated with a filter. The antenna apparatus includes a plurality of resonators where at least some of the resonators are each enclosed in a metal cavity and at least one resonator is exposed to free space to form a radiator element. The antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the radiator element and the position of the radiator element within the antenna apparatus.
An antenna apparatus includes an antenna integrated with a filter. The antenna apparatus includes a plurality of planar resonators where at least some of the resonators are each enclosed in a metal cavity and at least one planar resonator is exposed to free space to form a radiator element. The antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the planar radiator element and the position of the planar radiator element within the antenna apparatus.
An antenna apparatus includes an antenna integrated with a filter. The antenna apparatus includes a plurality of planar resonators where at least some of the resonators are each enclosed in a metal cavity and at least one planar resonator is exposed to free space to form a radiator element. The antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the planar radiator element and the position of the planar radiator element within the antenna apparatus.
A phased array antenna includes multiple antenna elements where each antenna element is an antenna apparatus that includes an antenna integrated with a filter. Each antenna apparatus includes a plurality of resonators where at least some of the resonators are each enclosed in a metal cavity and at least one resonator is exposed to free space to form a radiator element. Each antenna apparatus has a filter transfer function that is at least partially determined by dimensions of the radiator element and the position of the radiator element within the antenna apparatus. The scan volume of the phased array antenna is dependent on at least one physical dimension of the filter of the antenna apparatus.
H01Q 3/26 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la phase relative ou l’amplitude relative et l’énergie d’excitation entre plusieurs éléments rayonnants actifsDispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la distribution de l’énergie à travers une ouverture rayonnante
A semiconductor packaging structure is disclosed. The semiconductor packaging structure includes a heat spreader, a set of at least two leads, and a ceramic insulator. The heat spreader has a thermal conductivity greater than 300 W/m*K. The ceramic insulator has a mean flexural strength that is greater than 500 MPa and so better able to withstand the thermal expansion mismatch between it and the heat spreader. The heat spreader, the set of at least two leads, and the ceramic insulator may also be part of a semiconductor package along with at least one semiconductor device, a wire bond, and a ceramic lid.
Package deflection and mechanical stress of microelectronic packaging is minimized in a two step manufacturing process. In a first step, a ceramic insulator is high-temperature bonded between a wraparound lead layer and a buffer layer of a same material as the lead layer to provide a symmetrically balanced three-layer structure. In a second step, the three-layer structure is high temperature bonded, using a lower melt point braze, to a heat spreader. This package configuration minimizes package deflection, and thereby improves thermal dissipation and reliability of the package.
H01L 23/367 - Refroidissement facilité par la forme du dispositif
H01L 21/48 - Fabrication ou traitement de parties, p. ex. de conteneurs, avant l'assemblage des dispositifs, en utilisant des procédés non couverts par l'un uniquement des groupes ou
H01L 23/08 - ConteneursScellements caractérisés par le matériau du conteneur ou par ses propriétés électriques le matériau étant un isolant électrique, p. ex. du verre
H01L 23/04 - ConteneursScellements caractérisés par la forme
H01L 23/538 - Dispositions pour conduire le courant électrique à l'intérieur du dispositif pendant son fonctionnement, d'un composant à un autre la structure d'interconnexion entre une pluralité de puces semi-conductrices se trouvant au-dessus ou à l'intérieur de substrats isolants
H01L 23/36 - Emploi de matériaux spécifiés ou mise en forme, en vue de faciliter le refroidissement ou le chauffage, p. ex. dissipateurs de chaleur
A semiconductor packaging structure includes a copper heat-sink with a shim projection which provides a stress release structure. The heat-sink with the shim projection may be used in conjunction with a pedestal in order to further reduce the thermal stress produced from the mismatch of thermal properties between the copper heat-sink metal and the ceramic frame. The copper heat-sink with a shim projection may also be part of the semiconductor package along with a lead frame, the ceramic frame, a semiconductor device, a capacitor, a wire bond and a ceramic lid or an encapsulation. The copper heat-sink, the ceramic frame and the lead frame are all chosen to be cost effective, and chosen such that the packaging process for the semiconductor device is able to achieve a smaller size while maintaining high reliability, low cost, and suitability for volume manufacturing.
H01L 23/367 - Refroidissement facilité par la forme du dispositif
H01L 23/10 - ConteneursScellements caractérisés par le matériau ou par la disposition des scellements entre les parties, p. ex. entre le couvercle et la base ou entre les connexions et les parois du conteneur
H01L 49/02 - Dispositifs à film mince ou à film épais
H01L 23/00 - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide
H01L 23/373 - Refroidissement facilité par l'emploi de matériaux particuliers pour le dispositif
H01L 23/057 - ConteneursScellements caractérisés par la forme le conteneur étant une structure creuse ayant une base isolante qui sert de support pour le corps semi-conducteur les connexions étant parallèles à la base
38.
SEMICONDUCTOR PACKAGING STRUCTURE AND PACKAGE HAVING STRESS RELEASE STRUCTURE
A semiconductor packaging structure includes a copper heat-sink with a shim projection which provides a stress release structure. The heat-sink with the shim projection may be used in conjunction with a pedestal in order to further reduce the thermal stress produced from the mismatch of thermal properties between the copper heat-sink metal and the ceramic frame. The copper heat-sink with a shim projection may also be part of the semiconductor package along with a lead frame, the ceramic frame, a semiconductor device, a capacitor, a wire bond and a ceramic lid or an encapsulation. The copper heat-sink, the ceramic frame and the lead frame are all chosen to be cost effective, and chosen such that the packaging process for the semiconductor device is able to achieve a smaller size while maintaining high reliability, low cost, and suitability for volume manufacturing.
H01L 23/367 - Refroidissement facilité par la forme du dispositif
H01L 23/373 - Refroidissement facilité par l'emploi de matériaux particuliers pour le dispositif
H01L 23/06 - ConteneursScellements caractérisés par le matériau du conteneur ou par ses propriétés électriques
H01L 23/482 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p. ex. fils de connexion ou bornes formées de couches conductrices inséparables du corps semi-conducteur sur lequel elles ont été déposées
Forming the chip attachment system includes obtaining a chip having a bump core on a die. The method also includes obtaining an intermediate structure having a transfer pad on a substrate. The method further includes transferring the transfer pad from the substrate to the bump core such that the transfer pad becomes a solder layer on the bump core.
H01L 21/44 - Fabrication des électrodes sur les corps semi-conducteurs par emploi de procédés ou d'appareils non couverts par les groupes
H01L 21/48 - Fabrication ou traitement de parties, p. ex. de conteneurs, avant l'assemblage des dispositifs, en utilisant des procédés non couverts par l'un uniquement des groupes ou
H01L 23/00 - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide