The present invention refers to a SiC and Chlorosilane production system 2540, comprising at least one CVD SiC production reactor 850, in particular SiC fluidized bed reactor 850a, in particular according to claim 9, and a Chlorosilane production unit 2550, wherein the Chlorosilane production unit 2550 comprises at least a bed reactor 2416, in particular a fixed bed reactor or a fluidized bed reactor, for generating Chlorosilanes by reacting at least one fraction of the vent gas mixture provided via the vent gas outlet 216 of the CVD SiC production reactor 850 and Si, wherein further fractions of the vent gas mixture at least comprise H2 and a C-bearing molecule, in particular methane, and wherein Si is provided as solid 2398 inside the bed reactor 2416.
The present invention refers to a method for the production of SiC. The method at least comprises the steps: Providing a vent gas mixture (2400), wherein the vent gas mixture (2400) is preferably generated during SiC production and highly preferably generated during CVD SiC production, wherein at least one fraction of the vent gas mixture is HCI and/or STC, wherein further fractions (2401) of the vent gas mixture (2400) at least comprise H2 (2402) and a C-bearing-molecule, in particular methane, (2404), Generating Chlorosilanes (2394) by reacting the at least one fraction of the vent gas mixture and Si (2398), Forwarding at least the generated Chlorosilanes (2394) into a process chamber (856a) of the CVD SiC production reactor (850a), and Forwarding at least one C-bearing molecule into the CVD SiC production reactor (850a), Producing SiC inside the process chamber (856a) of the CVD SiC production reactor (850a) by depositing Si from the Chlorosilanes and C from the at least one C-bearing molecule on at least one deposition surface or Forwarding at least the generated Chlorosilanes (2394) into a process chamber (856b) of a further CVD SiC production reactor (850b), and Forwarding at least one C-bearing molecule into the further CVD SiC production reactor (850b), Producing SiC inside the process chamber (856) of the further CVD SiC production reactor (850b) by depositing Si from the Chlorosilanes and C from the at least one C- bearing molecule on at least one deposition surface.
C01B 32/963 - Préparation à partir de composés contenant du silicium
B01D 3/00 - Distillation ou procédés d'échange apparentés dans lesquels des liquides sont en contact avec des milieux gazeux, p. ex. extraction
C04B 35/565 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbures à base de carbure de silicium
The present invention refers to a method for the production of SiC. The method at least comprises the steps: Providing a vent gas mixture (2400), wherein the vent gas mixture (2400) is preferably generated during SiC production and highly preferably generated during CVD SiC production, wherein at least one fraction of the vent gas mixture is HCI and/or STC, wherein further fractions (2401) of the vent gas mixture (2400) at least comprise H2 (2402) and a C-bearing-molecule, in particular methane, (2404), Generating Chlorosilanes (2394) by reacting the at least one fraction of the vent gas mixture and Si (2398), Forwarding at least the generated Chlorosilanes (2394) into a process chamber (856a) of the CVD SiC production reactor (850a), and Forwarding at least one C-bearing molecule into the CVD SiC production reactor (850a), Producing SiC inside the process chamber (856a) of the CVD SiC production reactor (850a) by depositing Si from the Chlorosilanes and C from the at least one C-bearing molecule on at least one deposition surface or Forwarding at least the generated Chlorosilanes (2394) into a process chamber (856b) of a further CVD SiC production reactor (850b), and Forwarding at least one C-bearing molecule into the further CVD SiC productio reactor (850b), Producing SiC inside the process chamber (856) of the further CVD SiC production reactor (850b) by depositing Si from the Chlorosilanes and C from the at least one C- bearing molecule on at least one deposition surface.
The present invention refers to a method for the production of SiC. The method at least comprises the steps: Providing a vent gas mixture (2400), wherein the vent gas mixture (2400) is preferably generated during SiC production and highly preferably generated during CVD SiC production, wherein at least one fraction of the vent gas mixture is HCI and/or STC, wherein further fractions (2401) of the vent gas mixture (2400) at least comprise H2 (2402) and a C-bearing-molecule, in particular methane, (2404), Generating Chlorosilanes (2394) by reacting the at least one fraction of the vent gas mixture and Si (2398), Forwarding at least the generated Chlorosilanes (2394) into a process chamber (856a) of the CVD SiC production reactor (850a), and Forwarding at least one C-bearing molecule into the CVD SiC production reactor (850a), Producing SiC inside the process chamber (856a) of the CVD SiC production reactor (850a) by depositing Si from the Chlorosilanes and C from the at least one C-bearing molecule on at least one deposition surface or Forwarding at least the generated Chlorosilanes (2394) into a process chamber (856b) of a further CVD SiC production reactor (850b), and Forwarding at least one C-bearing molecule into the further CVD SiC production reactor (850b), Producing SiC inside the process chamber (856) of the further CVD SiC production reactor (850b) by depositing Si from the Chlorosilanes and C from the at least one C- bearing molecule on at least one deposition surface.
C01B 32/963 - Préparation à partir de composés contenant du silicium
B01D 3/00 - Distillation ou procédés d'échange apparentés dans lesquels des liquides sont en contact avec des milieux gazeux, p. ex. extraction
C04B 35/565 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbures à base de carbure de silicium
The present invention refers to a method for the production of SiC. The method at least comprises the steps: Providing a vent gas mixture (2400), wherein the vent gas mixture (2400) is preferably generated during SiC production and highly preferably generated during CVD SiC production, wherein at least one fraction of the vent gas mixture is HCl and/or STC, wherein further fractions (2401) of the vent gas mixture (2400) at least comprise H2 (2402) and a C-bearing-molecule, in particular methane, (2404), Generating Chlorosilanes (2394) by reacting the at least one fraction of the vent gas mixture and Si (2398), Forwarding at least the generated Chlorosilanes (2394) into a process chamber (856a) of the CVD SiC production reactor (850a), and Forwarding at least one C-bearing molecule into the CVD SiC production reactor (850a), Producing SiC inside the process chamber (856a) of the CVD SiC production reactor (850a) by depositing Si from the Chlorosilanes and C from the at least one C-bearing molecule on at least one deposition surface or Forwarding at least the generated Chlorosilanes (2394) into a process chamber (856b) of a further CVD SiC production reactor (850b), and Forwarding at least one C-bearing molecule into the further CVD SiC production reactor (850b), Producing SiC inside the process chamber (856) of the further CVD SiC production reactor (850b) by depositing Si from the Chlorosilanes and C from the at least one C- bearing molecule on at least one deposition surface.
The present invention refers to a multi-substrate wafer (2320). Said multi-substrate wafer (2320) comprises at least a first substrate (2317) and a second substrate, wherein the first substrate (2317) and the second substrate (2322) are bonded together, wherein the first substrate (2317) is a monocrystalline SiC crystal (2317), wherein the second substrate (2322) comprises polycrystalline 3C-SiC, wherein the at least 30% [volume], in particular at least 50% [volume] and preferably at least 70% [volume], of the polycrystalline 3C-SiC is grown in radial direction around at least one or exactly one central element (857), wherein the central element (857) preferably comprises or consists of SiC, wherein the second substrate (2322) has a specific electrical resistance of less than 15mOhmcm, wherein the second substrate (2322) is at least nitrogen doped, wherein more than 1018nitrogen atoms per cm3 are present inside the second substrate (2322) due to doping.
The present invention refers to a multi-substrate wafer (2320). Said multi-substrate wafer (2320) comprises at least a first substrate (2317) and a second substrate, wherein the first substrate (2317) and the second substrate (2322) are bonded together, wherein the first substrate (2317) is a monocrystalline SiC crystal (2317), wherein the second substrate (2322) comprises polycrystalline 3C-SiC, wherein the at least 30% [volume], in particular at least 50% [volume] and preferably at least 70% [volume], of the polycrystalline 3C-SiC is grown in radial direction around at least one or exactly one central element (857), wherein the central element (857) preferably comprises or consists of SiC, wherein the second substrate (2322) has a specific electrical resistance of less than 15mOhmcm, wherein the second substrate (2322) is at least nitrogen doped, wherein more than 1018 nitrogen atoms per cm3 are present inside the second substrate (2322) due to doping.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Semiconductors; semiconductor chips; semiconductor wafers;
semiconductor elements; semiconductor devices; structured
semi-conductor wafers; ingots being prepared substrates for
the manufacture of semi-conductors; electric and electronic
components.
9.
Method and Device for Producing a SiC Solid Material
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably includes at least the following steps: Introducing at least a first source gas into a process chamber, said first source gas including Si, introducing at least one second source gas into the process chamber, the second source gas including C, electrically energizing at least one separator element disposed in the process chamber to heat the separator element, setting a deposition rate of more than 200 μm/h, where a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and where the surface of the deposition element is heated to a temperature in the range between 1300° C. and 1800° C.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement
C23C 16/46 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour le chauffage du substrat
C23C 16/52 - Commande ou régulation du processus de dépôt
C30B 23/06 - Chauffage de l'enceinte de dépôt, du substrat ou du matériau à évaporer
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably includes at least the following steps:
Introducing at least a first source gas into a process chamber, said first source gas including Si,
introducing at least one second source gas into the process chamber, the second source gas including C,
electrically energizing at least one separator element disposed in the process chamber to heat the separator element,
setting a deposition rate of more than 200 μm/h,
where a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and
where the surface of the deposition element is heated to a temperature in the range between 1300° C. and 1800° C.
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably includes at least the following steps: introducing at least a first source gas into a process chamber, said first source gas including Si, introducing at least one second source gas into the process chamber, the second source gas including C, electrically energizing at least one separator element disposed in the process chamber to heat the separator element, setting a deposition rate of more than 200 μm/h, wherein a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and wherein the surface of the deposition element is heated to a temperature in the range between 1300° C. and 1800° C.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
C23C 16/46 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour le chauffage du substrat
C23C 16/52 - Commande ou régulation du processus de dépôt
C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement
C30B 23/06 - Chauffage de l'enceinte de dépôt, du substrat ou du matériau à évaporer
C30B 23/00 - Croissance des monocristaux par condensation d'un matériau évaporé ou sublimé
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably includes at least the following steps: introducing at least a first source gas into a process chamber, said first source gas including Si, introducing at least one second source gas into the process chamber, the second source gas including C, electrically energizing at least one separator element disposed in the process chamber to heat the separator element, setting a deposition rate of more than 200 μm/h, where a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and where the surface of the deposition element is heated to a temperature in the range between 1300° C. and 1800° C.
C30B 25/14 - Moyens d'introduction et d'évacuation des gazModification du courant des gaz réactifs
C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably includes at least the following steps: introducing at least a first source gas into a process chamber, said first source gas comprising Si, introducing at least one second source gas into the process chamber, the second source gas comprising C, electrically energizing at least one separator element disposed in the process chamber to heat the separator element, setting a deposition rate of more than 200 μm/h, where a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and where the surface of the deposition element is heated to a temperature in the range between 1300° C. and 1800° C.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
C23C 16/46 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour le chauffage du substrat
C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement
C23C 16/52 - Commande ou régulation du processus de dépôt
C23C 16/455 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour introduire des gaz dans la chambre de réaction ou pour modifier les écoulements de gaz dans la chambre de réaction
C23C 16/54 - Appareillage spécialement adapté pour le revêtement en continu
14.
Method and Device for Producing a SiC Solid Material
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably includes at least the following steps: introducing at least a first source gas into a process chamber, said first source gas including Si, introducing at least one second source gas into the process chamber, the second source gas including C, electrically energizing at least one separator element disposed in the process chamber to heat the separator element, setting a deposition rate of more than 200 μm/h, where a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and where the surface of the deposition element is heated to a temperature in the range between 1300° C. and 1700° C.g. 1)
C23C 16/46 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour le chauffage du substrat
C23C 16/455 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour introduire des gaz dans la chambre de réaction ou pour modifier les écoulements de gaz dans la chambre de réaction
C23C 16/52 - Commande ou régulation du processus de dépôt
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
C01B 32/977 - Préparation à partir de composés organiques contenant du silicium
15.
Method and Device for Producing a SiC Solid Material
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably includes at least the following steps: introducing at least a first source gas into a process chamber, said first source gas including Si, introducing at least one second source gas into the process chamber, the second source gas including C, electrically energizing at least one separator element disposed in the process chamber to heat the separator element, setting a deposition rate of more than 200 μm/h, where a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and where the surface of the deposition element is heated to a temperature in the range between 1300° C. and 1800° C.
The before mentioned object is solved by a SiC production reactor (850), wherein the SiC production reactor (850) at least comprises: A process chamber (856), wherein the process chamber (856) is at least surrounded by a bottom wall section, in particular a base plate (862) or base plate wall section, a side wall section (864a) and a top wall section (864b), a gas inlet unit (866) for feeding one feed-medium or multiple feed-mediums into a reaction space of the process chamber (856) for generating a source medium, wherein the gas inlet unit (866) is coupled with at least one feed-medium source (851), wherein a Si and C feed-medium source (851) is configured to provide at least Si and C, in particular SiCl3(CH3), and wherein a carrier gas feed-medium source (853) provides a carrier gas, in particular H2, or wherein the gas inlet unit (866) is coupled with at least two feed-medium sources (851, 852), wherein a Si feed medium source (851) is configured to provide at least Si and wherein a C feed medium source (852) provides at least C, in particular natural gas, Methane, Ethane, Propane, Butane and/or Acetylene, and wherein a carrier gas medium source (853) is configured to provide a carrier gas, in particular H2, at least one SiC growth substrate surface (2204) is formed inside the process chamber (856) by a wall surface section (2270), a heating unit (2230) for non-electrically generation of heat is provided, wherein the heating unit (2230) is configured for heating at least the SiC growth substrate surface (2204) to a temperature above 1300°C.
C23C 16/458 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour supporter les substrats dans la chambre de réaction
The disclosure refers to a furnace apparatus, in particular a furnace apparatus for growing crystals, in particular for growing SiC crystals. The furnace apparatus includes a furnace unit, where the furnace unit includes a furnace housing, at least one crucible unit where the crucible unit is arranged inside the furnace housing, where the crucible unit includes a crucible housing, where the housing has an outer surface and an inner surface, where the inner surface at least partially defines a crucible volume, where a receiving space for receiving a source material is arranged or formed inside the crucible volume, where a seed holder unit for holding a defined seed wafer is arranged inside the crucible volume, and at least one heating unit for heating the source material, where the receiving space for receiving the source material is at least in parts arranged between the heating unit and the seed holder unit.
The present invention refers to a SiC carrier wafer (2322), in particular crack-free SiC carrier wafer (2322), wherein the SiC carrier wafer (2322) has a diameter of at least 7,5cm, wherein the SiC carrier wafer (2322) has a height between 200µm and 500µm, wherein the SiC carrier wafer (2322) comprises at least one or exactly one inner section (2600), in particular one central inner section (2600), and wherein the SiC carrier wafer (2322) comprises an outer section (2602), wherein the outer section (2602) surrounds the inner section (2600), wherein the inner section (2600) consists of a part of a SiC growth substrate (857), wherein the inner section (2600) is formed by a crystal structure, wherein the crystal structure of the inner section (2600) is predominantly formed by a 3C crystal structure, and wherein the outer section (2602) is formed by a crystal structure, wherein the crystal structure of the outer section (2602) is predominantly formed by a 3C crystal structure and comprises crystallites (2414) extending in length direction of the individual crystallite (2414) more than 5µm, in particular more than 10µm and preferably more than 20µm and particular preferably more than 50 µm and most preferably up to 500 µm or up to 300 µm, wherein a bow of the SiC carrier wafer (2322) is below 50µm, in particular below 20µm, and/or wherein a warp of the SiC carrier wafer (2322) is below 50µm, in particular below 20µm, wherein the crystal structure of the inner section (2600) and the crystal structure of the outer section (2602), in particular the 3C crystal structure of the inner section (2600) and the 3C crystal structure of the outer section (2602), are Nitrogen doped, in particular more than 2000ppba nitrogen, and comprises an electric resistivity < 0.03 Ohm cm, preferably < 0.02 Ohm cm and most preferably < 0.01 Ohm cm.
The present invention concerns a SiC growth substrate for growing SiC in a CVD reactor. The SiC growth substrate comprises a main body, a first power connection (and a second power connection, wherein the main body has a main body length, wherein the main body length (ML) extends between the first power connection and the second power connection, wherein the first power connection is configured to conduct power into the main body for heating the main body and wherein the second power connection is configured to conduct electric power conducted via the first power connection into the main body out of the main body, wherein the main body forms a deposition surface for deposition of SiC for growing a SiC crust, wherein the main body is configured to resist forces generated during growth of the SiC crust having a minimal thickness of at least 1cm for preventing cracking of the main body due to the generated forces at least in a defined volume section of the main body, wherein the defined volume section is formed between a first plane and a second plane, wherein the first plane is perpendicular to the main body length and wherein the second plane is perpendicular to the main body length, wherein the distance between the first plane and the second plane is at least 5% of the main body length.
The present invention refers to a furnace apparatus comprising a furnace unit, wherein the furnace unit comprises a furnace housing with an outer surface and an inner surface, at least one crucible unit, wherein the crucible unit is arranged inside the furnace housing, wherein the crucible unit comprises a crucible housing, wherein the crucible housing has an outer surface and an inner surface, wherein the inner surface at least partially defines a crucible volume, wherein a receiving space for receiving a source material is arranged or formed inside the crucible volume, wherein a seed holder unit for holding a defined seed wafer is arranged inside the crucible volume, wherein the furnace housing inner wall and the crucible housing outer wall define a furnace volume, at least one heating unit for heating the source material, wherein the receiving space for receiving the source material is at least in parts arranged below the seed holder unit, characterized in that a position adjustment unit for adjustment of the position of the seed holder unit during operation of the furnace apparatus is provided, wherein the position adjustment unit is configured to increase the distance between the seed holder unit and the receiving space by moving the seed holder unit away from the receiving space.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Semiconductors; Semiconductor chips; Semiconductor wafers; Semiconductor elements; Semiconductor devices; Structured semi-conductor wafers; Ingots being prepared substrates for the manufacture of semi-conductors; Electric and electronic components.
23.
METHOD AND DEVICE FOR PRODUCING A SIC SOLID MATERIAL
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably comprises at least the following steps: Introducing at least a first source gas into a process chamber, said first source gas comprising Si, introducing at least one second source gas into the process chamber, the second source gas comprising C, electrically energizing at least one separator element disposed in the process chamber to heat the separator element, setting a deposition rate of more than 200µm/h, wherein a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and wherein the surface of the deposition element is heated to a temperature in the range between 1300°C and 1800°C.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably comprises at least the following steps: Introducing at least a first source gas into a process chamber, said first source gas comprising Si; introducing at least one second source gas into the process chamber, the second source gas comprising C; electrically energizing at least one separator element disposed in the process chamber to heat the separator element; setting a deposition rate of more than 200µm/h, wherein a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and wherein the surface of the deposition element is heated to a temperature in the range between 1300°C and 1800°C.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably comprises at least the following steps: Introducing at least a first source gas into a process chamber, said first source gas compris- ing Si, introducing at least one second source gas into the process chamber, the second source gas comprising C, electrically energizing at least one separator element disposed in the process chamber to heat the separator element, setting a deposition rate of more than 200µm/h, wherein a pressure in the process chamber of more than 1 bar is generated by the introduc- tion of the first source gas and/or the second source gas, and wherein the surface of the deposition element is heated to a temperature in the range be- tween 1300°C and 1800°C.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably comprises at least the following steps: Introducing at least a first source gas into a process chamber, said first source gas comprising Si, introducing at least one second source gas into the process chamber, the second source gas comprising C, electrically energizing at least one separator element disposed in the process chamber to heat the separator element, setting a deposition rate of more than 200pm/h, wherein a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and wherein the surface of the deposition element is heated to a temperature in the range between 1300°C and 1700°C.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably comprises at least the following steps: Introducing at least a first source gas into a process chamber, said first source gas comprising Si, introducing at least one second source gas into the process chamber, the second source gas comprising C, electrically energizing at least one separator element disposed in the process chamber to heat the separator element, setting a deposition rate of more than 200µm/h, wherein a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and wherein the surface of the deposition element is heated to a temperature in the range between 1300°C and 1800°C.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably comprises at least the following steps: Introducing at least a first source gas into a process chamber, said first source gas comprising Si; introducing at least one second source gas into the process chamber, the second source gas comprising C; electrically energizing at least one separator element disposed in the process chamber to heat the separator element; setting a deposition rate of more than 200µm/h, wherein a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and wherein the surface of the deposition element is heated to a temperature in the range between 1300°C and 1800°C.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
The present invention relates to a method for producing a preferably elongated SiC solid, in particular of polytype 3C. The method according to the invention preferably comprises at least the following steps: Introducing at least a first source gas into a process chamber, said first source gas comprising Si, introducing at least one second source gas into the process chamber, the second source gas comprising C, electrically energizing at least one separator element disposed in the process chamber to heat the separator element, setting a deposition rate of more than 200µm/h, wherein a pressure in the process chamber of more than 1 bar is generated by the introduction of the first source gas and/or the second source gas, and wherein the surface of the deposition element is heated to a temperature in the range between 1300°C and 1800°C.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement
The present invention refers to a furnace apparatus (100), in particular a furnace apparatus (100) for growing crystals, in particular for growing SiC crystals. The furnace apparatus comprises a furnace unit (102), wherein the furnace unit (102) comprises a furnace housing (108) at least one crucible unit (106) wherein the crucible unit (106) is arranged inside the furnace housing (108), wherein the crucible unit (106) comprises a crucible housing (110), wherein the housing (110) has an outer surface (112) and an inner surface (114), wherein the inner surface (114) at least partially defines a crucible volume (116), wherein a receiving space (118) for receiving a source material (120) is arranged or formed inside the crucible volume (116), wherein a seed holder unit (122) for holding a defined seed wafer (18) is arranged inside the crucible volume (116), and at least one heating unit (124) for heating the source material (120), wherein the receiving space (118) for receiving the source material (120) is at least in parts arranged between the heating unit (124) and the seed holder unit (122).
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
The present invention refers to a furnace apparatus (100), in particular a furnace apparatus (100) for growing crystals, in particular for growing SiC crystals. The furnace apparatus comprises a furnace unit (102), wherein the furnace unit (102) comprises a furnace housing (108) at least one crucible unit (106) wherein the crucible unit (106) is arranged inside the furnace housing (108), wherein the crucible unit (106) comprises a crucible housing (110), wherein the housing (110) has an outer surface (112) and an inner surface (114), wherein the inner surface (114) at least partially defines a crucible volume (116), wherein a receiving space (118) for receiving a source material (120) is arranged or formed inside the crucible volume (116), wherein a seed holder unit (122) for holding a defined seed wafer (18) is arranged inside the crucible volume (116), and at least one heating unit (124) for heating the source material (120), wherein the receiving space (118) for receiving the source material (120) is at least in parts arranged between the heating unit (124) and the seed holder unit (122).
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
C30B 23/00 - Croissance des monocristaux par condensation d'un matériau évaporé ou sublimé
The present invention refers to a furnace apparatus (100), in particular a furnace apparatus (100) for growing crystals, in particular for growing SiC crystals. The furnace apparatus comprises a furnace unit (102), wherein the furnace unit (102) comprises a furnace housing (108) at least one crucible unit (106) wherein the crucible unit (106) is arranged inside the furnace housing (108), wherein the crucible unit (106) comprises a crucible housing (110), wherein the housing (110) has an outer surface (112) and an inner surface (114), wherein the inner surface (114) at least partially defines a crucible volume (116), wherein a receiving space (118) for receiving a source material (120) is arranged or formed inside the crucible volume (116), wherein a seed holder unit (122) for holding a defined seed wafer (18) is arranged inside the crucible volume (116), and at least one heating unit (124) for heating the source material (120), wherein the receiving space (118) for receiving the source material (120) is at least in parts arranged between the heating unit (124) and the seed holder unit (122).
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives