Disclosed herein are embodiments of a glass composition including about 55 mol % to about 67 mol % SiO2, about 10 mol % to about 13 mol % B2O3, about 11 mol % to about 15 mol % Al2O3, and about 12 mol % to about 16 mol % alkali oxide. In one or more embodiments, the glass composition comprises a temperature at which a viscosity of the borosilicate glass composition is 1011 P from about 630° C. to about 650° C. Also disclosed is a method of forming a glass ply. In the method, a trough in an isopipe is overflowed with at least two streams of the glass composition, and the at least two streams of the glass composition are fused at a root of the isopipe to form the glass ply. The glass ply can be pair-shaped to form laminates for use as automotive glazing.
C03C 3/091 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du bore contenant de l'aluminium
B32B 17/10 - Produits stratifiés composés essentiellement d'une feuille de verre ou de fibres de verre, de scorie ou d'une substance similaire comprenant du verre comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique de résine synthétique
C03B 23/025 - Finition des feuilles de verre par bombage par gravité
C03C 3/097 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du phosphore, du niobium ou du tantale
2.
Simultaneous Multi-connector Cleaning and Protection
There is a cleaner for cleaning a plurality of fiber optic connectors, each fiber optic connector having fiber optic ferrule that has a main body including a mechanism to move at least one cleaner pad to respective positions adjacent the plurality of fiber optic connectors, a cleaning cloth movable relative to the plurality of fiber optic connectors, wherein the cleaning cloth engages the cleaner pad when the cleaner pad is aligned with one of the end faces and also engages the end face of each of the fiber optic ferrules to clean the fiber optic ferrules, the plurality of fiber optic connectors are ganged together, and wherein the end faces of the plurality of fiber optic ferrules are cleanable in succession one after the other with a single activation of the mechanism. The cleaning cloth may also be flipped between cleanings.
C03C 3/068 - Compositions pour la fabrication du verre contenant de la silice avec moins de 40% en poids de silice contenant du bore contenant des terres rares
C03C 3/095 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant des terres rares
C03C 21/00 - Traitement du verre, autre que sous forme de fibres ou de filaments, par diffusion d'ions ou de métaux en surface
4.
METHODS FOR FORMING FIDUCIAL MARKS ON GLASS-BASED SUBSTRATES
According to embodiments of the present disclosure, a method for forming a fiducial mark on a glass-based substrate includes irradiating the glass-based substrate with a laser beam to form a plurality of damage tracks that each extend from a first major surface of the glass-based substrate into the glass-based substrate. Each damage track includes a plurality of voids in the glass-based substrate and extends through less than or equal to 90 % of a thickness of the glass-based substrate. The plurality of damage tracks are arranged along a damage track line and are spaced apart by a distance from 1 µm to 150 µm along the first surface of the glass-based substrate. The method further includes contacting the glass-based substrate with an etchant to remove at least a portion of the glass-based substrate along the damage track line to form the fiducial mark.
A method of making a glass article using a phase separated silicate glass including a silica rich first phase and a boron rich second phase. The phase separated silica glass is etched with an etchant to remove at least a portion of the second phase and obtain a high silica content porous glass article. The porous glass article may be heat treated to consolidate the porous glass article to close the pores of the porous glass article and obtain a consolidated glass article with very low dielectric properties. Various glass compositions are disclosed that phase separate via spinodal decomposition.
C03C 3/093 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du bore contenant de l'aluminium contenant du zinc ou du zirconium
An imaging system for acquiring time-resolved images of crack propagation in glass samples includes a light source and data camera in a shadowgraph detector configuration, and a trigger camera to acquire images over an appropriate time window to capture crack propagation. Suitable software-based processing and analysis methods facilitate identifying individual cracks, branchpoints, and fragments in the images, as well as measuring their individual and statistical properties.
A method of forming a glass laminate includes providing a substrate having a core layer and at least one cladding layer; heat treating the substrate at a temperature such that the at least one cladding layer is phase-separated after the heat treating; and etch treating the substrate for at least 10 sec. A phase-separated glass laminate includes a substrate having a core layer and at least one phase-separated cladding layer, such that the glass laminate has a % transmission of at least 96%, and the at least one cladding layer comprises a grain size in a range of 10 nm to 1 μm, or a graded glass index of greater than 5 nm.
C03C 17/02 - Traitement de surface du verre, p. ex. du verre dévitrifié, autre que sous forme de fibres ou de filaments, par revêtement par du verre
B32B 3/30 - Produits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche continue dont le périmètre de la section droite a une allure particulièreProduits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche comportant des cavités ou des vides internes caractérisés par une couche comportant des retraits ou des saillies, p. ex. des gorges, des nervures
B32B 17/06 - Produits stratifiés composés essentiellement d'une feuille de verre ou de fibres de verre, de scorie ou d'une substance similaire comprenant du verre comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique
C03C 3/091 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du bore contenant de l'aluminium
A glass substrate including a silica-based glass, the silica-based glass includes silica and from 0 wt.% to 15 wt.% titania. A first portion of the silica-based glass has a height of 1.0 mm and a first cross-section having an area greater than or equal to 50.0 cm2. A first sub-portion of the first portion has a height of 1.0 mm, a length of 40.0 mm, a width of 40.0 mm, and a second cross-section. A peak-to-valley difference of a hydroxyl group concentration of the first sub-portion is less than or equal to 15 ppm, as measured at the second cross-section. A method of forming a glass substrate includes heating a molded precursor mass. The molded precursor mass includes soot particles. The heating includes exposing the molded precursor mass to a consolidation environment containing steam, and maintaining the molded precursor mass in the consolidation environment while reducing the consolidation temperature.
A method of forming a multicore fiber comprises the steps of drilling a plurality of holes in a soot blank, inserting a plurality of graphite rods into the plurality of holes to form a soot preform assembly, consolidating the soot preform assembly in a high temperature furnace to form a glass preform assembly, removing the plurality of graphite rods from the glass preform assembly to form a solid glass preform containing multiple holes, inserting a plurality of glass core canes into the holes to form a multicore preform, placing the multicore preform in a draw furnace, and drawing multicore fiber from the multicore preform.
An apparatus and method for manufacturing a glass article includes a scoring mechanism configured to impart a score line across a first major surface of the glass article and a separating mechanism that includes a glass sheet separation member having a first longitudinal length and a second longitudinal length such that a height of the glass sheet separation member is more upwardly inclined along the second longitudinal length than along the first longitudinal length.
A method for welding low thermal expansion glass includes applying an inorganic film on a first surface of a first glass substrate, positioning a second glass substrate with a second surface of the second glass substrate facing towards the first surface of the first glass substrate, and exposing one side of the inorganic film to a pulsed laser having a power of at least 2 W, a pulse duration of at least 0.5 ns, and a repetition rate of at least 0.2 MHz. The first glass substrate and second glass substrate each have a CTE less than or equal to about 3 ppm/°C-1. The pulsed laser heats and melts the inorganic film and heats the first glass substrate, the second glass substrate, or both to produce a glass article comprising the first glass substrate and the second glass substrate rigidly joined at a weld region.
C03C 3/06 - Compositions pour la fabrication du verre contenant de la silice avec plus de 90% en poids de silice, p. ex. quartz
C03C 23/00 - Autres traitements de surface du verre, autre que sous forme de fibres ou de filaments
C03C 27/08 - Liaison verre-verre par des procédés autres que la fusion au moyen d'un métal interposé
C03C 17/09 - Traitement de surface du verre, p. ex. du verre dévitrifié, autre que sous forme de fibres ou de filaments, par revêtement par des métaux par dépôt à partir d'une phase vapeur
C03C 27/06 - Liaison verre-verre par des procédés autres que la fusion
12.
GLASS-CERAMIC AND CRYSTALLINE ARTICLES AND METHODS OF MAKING SAME
Embodiments of the disclosure relate to glass-ceramic or crystalline article. The article includes 25 mol %≤silica≤60 mol %, 12.5 mol %≤alumina≤45 mol %, and 12.5 mol %≤strontium oxide≤45 mol %. According to certain embodiments, an interior of the article is mostly amorphous glass, and the interior is at least partially surrounded by a shell that is mostly crystalline. The shell defines a first major surface on a first side of the interior and a second major surface opposite to the first major surface on a second side of the interior. According to certain other embodiments, the article is a crystalline article in which columnar crystals grow inwardly from opposing surfaces and meet at about a midline of the article.
C03C 10/00 - Verre dévitrifié ou vitrocéramiques, c.-à-d. verre ou céramiques ayant une phase cristalline dispersée dans la phase vitreuse et constituant au moins 50% en poids de la composition
C03C 3/085 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant de l'oxyde d'aluminium ou un composé du fer contenant un oxyde d'un métal divalent
C03C 4/00 - Compositions pour verres ayant des propriétés particulières
A method of forming a multicore fiber comprises the steps of drilling a plurality of holes in a soot blank, inserting a plurality of graphite rods into the plurality of holes to form a soot preform assembly, consolidating the soot preform assembly in a high temperature furnace to form a glass preform assembly, removing the plurality of graphite rods from the glass preform assembly to form a solid glass preform containing multiple holes, inserting a plurality of glass core canes into the holes to form a multicore preform, placing the multicore preform in a draw furnace, and drawing multicore fiber from the multicore preform.
A glass substrate including a silica-based glass, the silica-based glass includes silica and from 0 wt. % to 15 wt. % titania. A first portion of the silica-based glass has a height of 1.0 mm and a first cross-section having an area greater than or equal to 50.0 cm2. A first sub-portion of the first portion has a height of 1.0 mm, a length of 40.0 mm, a width of 40.0 mm, and a second cross-section. A peak-to-valley difference of a hydroxyl group concentration of the first sub-portion is less than or equal to 15 ppm, as measured at the second cross-section. A method of forming a glass substrate includes heating a molded precursor mass. The molded precursor mass includes soot particles. The heating includes exposing the molded precursor mass to a consolidation environment containing steam, and maintaining the molded precursor mass in the consolidation environment while reducing the consolidation temperature.
In aspects, a concentration of lithium oxide at a surface is greater than a concentration of lithium oxide at a midpoint by from about 0.2 mol % to about 2 mol %. In aspects, a concentration of lithium oxide at a surface is from about 0.2 mol % to about 2 mol %. In aspects, a total concentration of potassium oxide, rubidium oxide, cesium oxide, and francium oxide at a surface is from about 5 mol % to about 15 mol %. In aspects, a ratio of the total concentration of potassium oxide, rubidium oxide, cesium oxide, and francium oxide at a surface to a concentration of lithium oxide at the surface is from about 1 to about 20. Methods include immersing a substrate in a molten salt bath at 380° C. or more for from about 1 minute to about 10 minutes or for from about 3 minutes to about 2 hours.
An ultraviolet ink composition includes from 25 wt % to 50 wt % of a pigment dispersion, from greater than 0 wt % to 10 wt % of a photoinitiator package; from 10 wt % to 42 wt % of a reactive diluent; from 10 wt % to 20 wt % of a multifunctional monomer; and from 0 wt % to 25 wt % of a difunctional monomer. An ink primer includes from 2 wt % to 10 wt % of an adhesion promoter configured to bond to glass and from 90 wt % to 98 wt % of a solvent configured to promote bonding of the adhesion promoter to the glass. Another ink primer includes from 2 wt % to 10 wt % of an adhesion promoter configured to bond to glass, from greater than 0 wt % to 10 wt % of a photoinitiator package; and from 30 wt % to 45 wt % of a monofunctional monomer.
2232222O in an amount in a range from 0.05 mol% to 8 mol%. The glass composition has a first silver ion diffusivity at 110 °C of 5 x 10-19m2/s or less, and the glass composition has a second silver ion diffusivity at 350 °C of at least 5 x 10-17m2/s at 350 °C. The glass composition is particularly suitable for use as a glass substrate of a photonic chip package.
C03C 3/091 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du bore contenant de l'aluminium
C03C 3/097 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du phosphore, du niobium ou du tantale
C03C 21/00 - Traitement du verre, autre que sous forme de fibres ou de filaments, par diffusion d'ions ou de métaux en surface
Described herein are organic light emitting diode (OLED) assemblies (110) comprising an OLED structure and an OLED support structure configured to attach the OLED to a curved holder (120). In embodiments, the OLED structure includes a cathode, an anode, and an organic light emitting semiconductor material interposed between the cathode and the anode. In embodiments, the OLED support structure includes a flexible glass-based substrate (220), one or more organic layers (230,240), a first adhesive layer (250), a metal layer (260), and a second adhesive layer (270) with a perimeter edge comprising a corner with a comer radius of from 1 mm to 25 mm.
Described herein is an organic light emitting diode (OLED) assembly (110), including an OLED structure and an OLED support structure configured to attach the OLED to a holder (120). In embodiments, the OLED structure comprises a cathode, an anode, and an organic light emitting semiconductor material interposed between the cathode and the anode. In embodiments, the OLED support structure comprises a flexible glass-based substrate (220), one or more organic layers (230,240), a first adhesive layer (250), a metal layer (260), and a second adhesive layer (270). In embodiments, the flexible glass-based substrate (220) can be larger than the metal layer (260), providing an overhang structure (310).
Methods for providing inorganic deposits, such as refractory oxide nanoparticles, on a porous surface which include atomization a sol-gel suspension; aerosolizing at least a portion of the suspension into droplets; evaporating organic solvent from the droplets to form agglomerates of the particles; depositing the agglomerates onto the substrate; and curing the silane binder in the agglomerates on the substrate to form a network of inorganic particles bound to the substrate as inorganic deposits.
Methods for providing inorganic deposits on a porous surface of a substrate, including atomizing a suspension comprised of inorganic particles, a binder precursor, a silane cross-linker, and a liquid, to form an aerosol of droplets; depositing the droplets into or onto the porous substrate; and forming a silane binder in situ on the porous substrate from the binder precursor provided by the droplets, thereby binding the inorganic particles to the porous substrate.
An optical device comprises a base substrate comprising a substrate end facet and waveguide integrally formed therein and an expanded beam connector comprising a spacer plate directly attached to the substrate end facet of the base substrate, the spacer plate comprising a spacer plate end facet, and a lens directly attached to the spacer plate end facet and comprising a lens facet, wherein the waveguide propagates an optical signal along an optical path through the substrate end facet, from the substrate end facet and through the spacer plate end facet, and from the spacer plate end facet and through the lens facet and wherein the lens collimates the optical signal between the lens facet and the waveguide of the base substrate.
22) in the second zone may be greater than the first residence time (t1). A Rayleigh scattering coefficient of the optical fiber drawn may be less than 0.75 dB/km*micron4, and an attenuation of the optical fiber drawn may be less than 0.16 dB/km at 1550 nm.
A sintered cathode includes a first surface, a second surface opposite the first surface, a sintered polycrystalline material, a thickness greater than or equal to 5 µm, and a porosity less than 35%. The polycrystalline material includes a plurality of crystal grains having a layered rock-salt structure. A crystal direction of the plurality of crystal grains is random relative to a first surface and a second surface. A method of forming a sintered cathode includes mixing lithium-containing particles and cobalt-containing particles to form a LCO precursor powder including a LT-LCO phase, dispersing the LCO precursor powder in a binder and a solvent to form a slurry, tape casting the slurry to form a green tape including the LT-LCO, and sintering the green tape to form a sintered cathode including a HT-LCO phase and a random grain texture.
C04B 35/01 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes
C04B 35/626 - Préparation ou traitement des poudres individuellement ou par fournées
A method for forming a precision optical element via injection molding is disclosed. The method comprises heating chalcogenide glass to form a glass melt and directing the glass melt along a passage from an injection device into a mold cavity of a mold that negatively defines the precision optical element. The passage comprises a nozzle passage defined by the injection device, a runner passage defined by a mold interior of the mold, and a sprue passage defined by a heated sprue bushing disposed in the mold. The method further comprises solidifying the glass melt in the mold to form the precision optical element and a runner element corresponding to the runner passage, and then ejecting the precision optical element and the runner element therefrom. The method further comprises heating a first portion of the sprue passage proximate the runner passage such that the solidified glass therein releases completely therefrom.
Disclosed herein are embodiments of a hermetically sealed device. The device includes a first glass substrate with first and second major surfaces and a first minor surface extending around a first periphery of the first glass substrate and connecting the first and second major surfaces. The device further includes a second glass substrate with third and fourth major surfaces and a second minor surface extending around a second periphery of the second glass substrate and connecting the third and fourth major surfaces. A functional layer is disposed between the the first glass substrate and the second glass substrate. A sealing element is fused to the first and second minor surfaces, which seals the functional layer between the first glass substrate and the second glass substrate.
C03C 27/06 - Liaison verre-verre par des procédés autres que la fusion
C03C 8/24 - Compositions de scellement par fusion, constituées de frittes vitreuses contenant des additifs, utilisées pour le scellement de matériaux différents, p. ex. verre et métalVerre de scellement
C03C 3/12 - Compositions pour la fabrication du verre contenant un oxyde mais pas de silice
27.
HIGH DAMAGE RESISTANCE THREE-LAYERS LAMINATE GLASS WITH LOW CENTRAL TENSION
A glass article includes a core glass comprising a first major surface and a second major surface. A first clad layer is fused to the first major surface and a second clad layer is fused to the second major surface. The core glass, the first clad layer, and the second clad layer are formed of a borosilicate glass comprising SiO2 > 74 mol%, B2O3 > 10 mol%, and Al2O3 less than 4 mol%.
C03C 3/091 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du bore contenant de l'aluminium
C03B 17/00 - Façonnage du verre par coulée, poussée ou étirage vers le bas ou latéral au travers de fentes ou par écoulement au-dessus de lèvres
C03C 21/00 - Traitement du verre, autre que sous forme de fibres ou de filaments, par diffusion d'ions ou de métaux en surface
28.
IGU HAVING SUSPENDED THIN CENTER PANE AND RELATED METHODS AND SYSTEMS
Various aspects for an insulating glass unit (IGU) are provided herein which include a suspension assembly for retaining an inner pane in spaced relation from two outer panes, where the IGU has a seal is separate from the suspension assembly, including related methods and systems for making an IGU.
E06B 3/67 - Blocs comprenant plusieurs panneaux de verre ou analogues qui sont espacés et fixés les uns aux autres de façon permanente, p. ex. le long des bords caractérisés par des aménagements ou des dispositifs additionnels pour l'isolation thermique ou acoustique
E06B 3/677 - Vidage ou remplissage de l'espace entre les vitresPrévention de la condensation dans l'espace entre les vitresNettoyage de l'espace entre les vitres
B32B 17/06 - Produits stratifiés composés essentiellement d'une feuille de verre ou de fibres de verre, de scorie ou d'une substance similaire comprenant du verre comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique
The present disclosure concerns porous microcarriers and the methods for preparing the same. The microcarriers are equipped with pores throughout to house cells and allow for a protective environment therein. The microcarriers allow for cell adherence or suspension within the pores. The microcarriers are further dissolvable, allowing for the collection of the cells therein. The microcarriers are formed through generation of carbon dioxide during rapid cross-linking. A partial digest removes a formed surface, thereby exposing the pores and allow cells access to the interior of the microcarriers.
C12N 5/00 - Cellules non différenciées humaines, animales ou végétales, p. ex. lignées cellulairesTissusLeur culture ou conservationMilieux de culture à cet effet
30.
SERPENTINE HONEYCOMB HEATER DESIGN TO PROTECT AGAINST DEFORMATION AND SHORTING
An electrical heater assembly including a heater body. The heater body includes a resistive portion that includes a plurality of cells and a plurality of slots that define a serpentine path. A slot end region corresponds to each of the slots as a subset of cells that are located adjacent to terminal ends the slots with respect to a first lateral direction and bounded with respect to a second lateral direction between opposing slot walls of the slots. A first lateral dimension of the cells in the slot end region is greater than a second lateral dimension of the cells. The slot end region includes a plurality of the cells that are adjacent to each other with respect to the second lateral direction and/or where a slot width of the slots is at least two times the second lateral dimension of the cells in the slot end region.
F01N 3/20 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour rendre les gaz d'échappement inoffensifs par conversion thermique ou catalytique des composants nocifs des gaz d'échappement caractérisés par les méthodes d'opérationCommande spécialement adaptés à la conversion catalytique
C03C 3/097 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du phosphore, du niobium ou du tantale
B24C 3/00 - Machines ou dispositifs de traitement au jet abrasifInstallations de traitement au jet abrasif
C03C 10/00 - Verre dévitrifié ou vitrocéramiques, c.-à-d. verre ou céramiques ayant une phase cristalline dispersée dans la phase vitreuse et constituant au moins 50% en poids de la composition
C03C 15/00 - Traitement de surface du verre, autre que sous forme de fibres ou de filaments, par attaque chimique
C03C 19/00 - Traitement de surface du verre, autre que sous forme de fibres ou de filaments, par des procédés mécaniques
C03C 23/00 - Autres traitements de surface du verre, autre que sous forme de fibres ou de filaments
C03C 4/00 - Compositions pour verres ayant des propriétés particulières
C03C 15/02 - Traitement de surface du verre, autre que sous forme de fibres ou de filaments, par attaque chimique pour l'obtention d'une surface unie
C03C 21/00 - Traitement du verre, autre que sous forme de fibres ou de filaments, par diffusion d'ions ou de métaux en surface
32.
MATERIAL COMPOSITIONS AND WAVEGUIDE WIDTHS OF WAVEGUIDES
H01P 11/00 - Appareils ou procédés spécialement adaptés à la fabrication de guides d'ondes, résonateurs, lignes ou autres dispositifs du type guide d'ondes
33.
METHODS OF MAKING AN ELECTRICALLY CONDUCTIVE ALUMINUM - CONTAINING SUBSTRATE
A method of forming an electrically conductive substrate. The method includes heating a green body by exposing the green body to a heating cycle. The green body includes 30 to 90 % by weight aluminum particles, 10 to 70 % by weight pore former particles, and 2 to 20 % binder by weight in superaddition to the total sum of the aluminum and the pore former particles. Heating the green body includes exposing the green body to the heating cycle for a temperature and a period of time sufficient to sinter the aluminum particles together and form pores from the pore former particles. A metal substrate, an apparatus for gas separation, and a method of carbon dioxide capture are also disclosed.
B22F 3/11 - Fabrication de pièces ou d'objets poreux
C22C 1/08 - Alliages poreux avec pores ouverts ou fermés
B01D 53/02 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse
B01J 20/02 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique
34.
METHODS OF FORMING TRANSPARENT CERAMIC SUBSTRATES, TRANSPARENT CERAMIC SUBSTRATES AND QUANTUM MEMORY SYSTEMS
A method of forming a transparent ceramic substrate includes pressing doped nanoparticles to form a preform, pre-sintering the preform, and pressing and sintering the pre-sintered preform to form the transparent ceramic substrate. The pre-sintering includes a first pre-sintering step including heating the preform in a furnace by ramping a furnace temperature to a first furnace temperature greater than or equal to 1450 °C and less than or equal to 1600 °C and a second pre-sintering step including heating the preform at a second furnace temperature greater than or equal to 1350 °C and less than or equal to 1500 °C to form the pre-sintered preform.
C04B 35/505 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de composés de terres rares à base d'oxyde d'yttrium
C04B 35/626 - Préparation ou traitement des poudres individuellement ou par fournées
Glasses are disclosed which can be used to produce glass articles, e.g., glass substrates, for flat panel display devices. The glasses may be substantially alkali free. The glasses are doped with one or more transition metals (e.g., Ni, Co) and exhibit reduced optical transmittance to suppress light leakage from the display device and/or to improve contrast. The display device may be a bottom emission display device or a top emission display device. The display device may be a tiled display device. Glasses disclosed herein may be used, for example, as a baseplate having a plurality of display substrates disposed thereon, a display substrate (e.g., backplane) having a plurality of light emitters disposed thereon, a glass cover plate, or combinations thereof.
C03C 3/087 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant de l'oxyde d'aluminium ou un composé du fer contenant un oxyde d'un métal divalent contenant de l'oxyde de calcium, p. ex. verre à vitre ordinaire ou verre pour récipients creux
C03C 3/091 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du bore contenant de l'aluminium
H01L 25/075 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans une seule des sous-classes , , , , ou , p. ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés les dispositifs étant d'un type prévu dans le groupe
H01L 25/16 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant de types couverts par plusieurs des sous-classes , , , , ou , p. ex. circuit hybrides
H01L 27/12 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant autre qu'un corps semi-conducteur, p.ex. un corps isolant
A heterogeneous multicore optical fiber includes two or more core elements and features low counterpropagating crosstalk at large bend radius. At least a pair of the two or more core elements differ in propagation constant β and preferably have similar effective area Aeff at 1550 nm. The heterogeneous multicore optical fiber exhibits a critical bend radius corresponding to a maximum in counterpropagating crosstalk and marking a regime of higher bend radius over which counterpropagating crosstalk decreases. The critical bend radius is preferably less than 2000 mm.
A VSFF fiber optic connector has a housing with a first crimp half at a rear portion of the housing and having a fiber channel to receive optical fibers for termination in the VSFF fiber optic connector and a second crimp half separable from the first crimp half, the second crimp half being attachable to the housing at the first crimp half after termination of the optical fibers in the VSFF fiber optic connector. The first crimp half has first and second retention features to engage the second crimp half, wherein an inward facing surface of each of the first and the second retention features are continuous with the fiber channel.
A method of forming a glass article includes positioning a first glass substrate and a second glass substrate with a first interface surface of the first glass substrate facing a second interface surface of the second glass substrate to produce a glass article precursor, and heating the glass article precursor in a sealing environment to stack seal the first glass substrate to the second glass substrate to form the glass article. Subsequent to the heating, the second interface surface and the first interface surface are in direct contact with one another, establishing an interface between the first glass substrate and the second glass substrate.
Glasses are disclosed which can be used to produce glass articles, e.g., glass substrates, for flat panel display devices. The glasses may be substantially alkali free. The glasses are doped with one or more transition metals (e.g., Ni, Co) and exhibit reduced optical transmittance to suppress light leakage from the display device and/or to improve contrast. The display device may be a bottom emission display device or a top emission display device. The display device may be a tiled display device. Glasses disclosed herein may be used, for example, as a baseplate having a plurality of display substrates disposed thereon, a display substrate (e.g., backplane) having a plurality of light emitters disposed thereon, a glass cover plate, or combinations thereof.
C03C 4/00 - Compositions pour verres ayant des propriétés particulières
C03C 3/087 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant de l'oxyde d'aluminium ou un composé du fer contenant un oxyde d'un métal divalent contenant de l'oxyde de calcium, p. ex. verre à vitre ordinaire ou verre pour récipients creux
C03C 3/085 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant de l'oxyde d'aluminium ou un composé du fer contenant un oxyde d'un métal divalent
C03C 3/095 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant des terres rares
C03C 3/091 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du bore contenant de l'aluminium
40.
METHODS FOR GLASS RIBBON FORMATION OF GLASS MELTS DELIVERED AT LOW VISCOSITIES
A method for producing a glass ribbon includes delivering glass melt to a first pair of rollers and rolling the glass melt between the first pair rollers in a first gap. The method further includes rolling the glass melt in a second gap between a second pair of rollers, wherein the second gap is offset from the first gap and located downstream from the first gap.
CC131CC33; an attenuation less than 0.165 dB/km at 1550 nm; an effective area ranging from about 75 μm2to about 135 μm2 at 1550 nm; and a cable cutoff wavelength less than or equal to 1530 nm. The common cladding may directly contact the trench region. A counter-propagating crosstalk at 1550 nm between two adjacent core portions may be less than or equal to -40 dB/100km.
CC131CC33; an attenuation less than 0.165 dB/km, and an effective area of 75 μm2to 135 μm2 at a wavelength of 1550 nm; and a cable cutoff wavelength less than or equal to 1530 nm; wherein the multicore optical fiber has a core multiplicity factor of 0.028 to 0.045; and wherein a counter-propagating crosstalk at 1550 nm between adjacent core portions is less than -40 dB per 100 km.
G02B 6/036 - Fibres optiques avec revêtement le noyau ou le revêtement comprenant des couches multiples
43.
METHOD FOR FORMING GEOMETRICALLY-COMPLEX CORE ASSEMBLIES USING DISSOLVABLE, 3D-PRINTED MOLDS AND PROCESS FOR FORMING FLUIDIC MODULES USING SUCH CORE ASSEMBLIES
A process for forming a fluidic module for a flow reactor is disclosed. The process comprises positioning a core assembly comprising cores within a mold. The cores comprise a first channel core with a first shape. The process further comprises covering the core assembly with a volume of binder-coated particles and then pressing the mold with the core assembly and the volume of the particles therein to form a pressed body. The process further comprises heating the pressed body to remove the cores of the core assembly. Thereafter, the process comprises sintering the pressed body to form the fluidic module having fluid channels extending therethrough such that each fluid channel corresponds, respectively, to the cores removed during the heating.
B28B 7/34 - Moules, noyaux ou mandrins en matériau particulier, p. ex. en matériau destructible
B28B 3/02 - Fabrication d'objets façonnés en utilisant des pressesPresses spécialement adaptées à ce travail dans laquelle un poinçon exerce une pression sur le matériau dans une cavité de moulagePoinçons de forme particulière
B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en généralAppareils appropriés
44.
SYSTEMS AND PROCESSES FOR RAPID COATING OF GLASS ARTICLES
Systems and methods of coating glass articles are disclosed herein. The methods of coating the glass articles include transporting glass articles on a conveyor through a focal point of a coating station, where the coating station comprises a plurality of spray nozzles that spray a plurality of coating sprays including at least one leading spray and at least one trailing spray of droplets of a coating solution toward the focal point of the coating station where the spray droplets contact surfaces of the glass articles forming a coating on the glass articles. The systems include the conveyor, the coating station, and a coating material system coupled to the coating station that supplies the plurality of spray nozzles with droplets of the coating solution. The plurality of spray nozzles are oriented in the coating station with a specific spray angle relative to a traveling direction of glass articles.
C03C 17/00 - Traitement de surface du verre, p. ex. du verre dévitrifié, autre que sous forme de fibres ou de filaments, par revêtement
C03C 17/32 - Traitement de surface du verre, p. ex. du verre dévitrifié, autre que sous forme de fibres ou de filaments, par revêtement par des matières organiques avec des résines synthétiques ou naturelles
B05B 12/18 - Aménagements de commande de la distributionAménagements de réglage de l’aire de pulvérisation pour régler l’aire de pulvérisation en utilisant des fluides, p. ex. des courants de gaz
B05B 13/02 - Moyens pour supporter l'ouvrageDisposition ou assemblage des têtes de pulvérisationAdaptation ou disposition des moyens pour entraîner des pièces
A monolithic substrate including a matrix of a glass-ceramic composite material defining a continuous interconnected pore structure. The glass-ceramic composite material has a porosity of at least 48% by volume as determined by mercury intrusion porosimetry. At least 20% of the porosity is contributed by pores having a pore diameter between 0.1 μm and 1 μm, as determined by mercury intrusion porosimetry.
B01J 20/10 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance inorganique contenant de la silice ou un silicate
B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
C04B 35/14 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base de silice
C04B 38/00 - Mortiers, béton, pierre artificielle ou articles de céramiques poreuxLeur préparation
B01D 46/24 - Séparateurs de particules utilisant des corps filtrants creux et rigides, p. ex. appareils de précipitation de poussières
46.
SOURCE CIRCUIT BOARDS AND INTEGRATED DIGITAL RADIO-FREQUENCY CIRCUIT SYSTEMS HAVING WAVEGUIDE CHANNELS
An integrated digital RF circuit system comprises: a base substrate comprising a substrate integrated waveguide comprising a waveguide width, a first plurality of vias, and a second plurality of vias; and a source circuit board comprising a waveguide channel, wherein: the waveguide channel is positioned at least partially between the first plurality of vias and the second plurality of vias; the waveguide channel defines a channel length and a channel width; the channel length is greater than the channel width; and the channel length is greater than the waveguide width.
A cell culture bioreactor system and method of using the same is disclosed. The method includes providing a fluid pathway for conveying cell culture media through the bioreactor system; providing a bioreactor vessel with an interior reservoir for housing a cell culture, and a first bioreactor inlet and a second bioreactor inlet fluidly connecting the interior reservoir to the fluid pathway; flowing cell culture media in a first direction from the fluid pathway into the interior reservoir through the first bioreactor inlet and out of the reservoir to the fluid pathway through the second bioreactor inlet; and after maintaining flow in the first direction, reversing the flow of cell culture media to a second direction, the second direction being from the fluid pathway into the interior reservoir through the second bioreactor inlet and out of the interior reservoir to the fluid pathway through the first bioreactor inlet.
C12M 1/12 - Appareillage pour l'enzymologie ou la microbiologie avec des moyens de stérilisation, filtration ou dialyse
C12M 1/00 - Appareillage pour l'enzymologie ou la microbiologie
C12M 3/04 - Appareillage pour la culture de tissus, de cellules humaines, animales ou végétales, ou de virus comportant des moyens fournissant des couches minces
C12M 1/34 - Mesure ou test par des moyens de mesure ou de détection des conditions du milieu, p. ex. par des compteurs de colonies
A method of forming a monolithic article includes extruding an extrudable composition to form an extrudate, the extrudable composition including a binder, inorganic particles, and graphite particles, the extrudate including an exterior skin and a core disposed within the exterior skin; drying the extrudate; debinding the extrudate in a debinding atmosphere at one or more debinding temperatures to remove the binder from the extrudate; and sintering the extrudate in a sintering atmosphere at one or more sintering temperatures to remove the graphite particles from the exterior skin of the extrudate and to sinter the inorganic particles of the extrudate, to thereby form the monolithic article. The one or more debinding temperatures are less than 650 °C. The one or more sintering temperatures are greater than or equal to 650 °C and the sintering atmosphere includes an oxygen concentration less than or equal to 2.5%.
B01D 39/20 - Autres substances filtrantes autoportantes en substance inorganique, p. ex. papier d'amiante ou substance filtrante métallique faite de fils métalliques non-tissés
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
C04B 35/16 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base de silicates autres que l'argile
C04B 38/00 - Mortiers, béton, pierre artificielle ou articles de céramiques poreuxLeur préparation
effeff at 1550 nm. The heterogeneous multicore optical fiber exhibits a critical bend radius corresponding to a maximum in counterpropagating crosstalk and marking a regime of higher bend radius over which counterpropagating crosstalk decreases. The critical bend radius is preferably less than 2000 mm.
Coated articles are described herein including a fluorine-free surface-modifying layer. The surface-modifying layer includes an alkyl silane at an exterior surface. The alkyl silane can be (i) bonded to another part of the coated article by a silane group and/or (ii) a silane group of the alkyl silane is a free end of the alkyl silane. In aspects, the surface-modifying layer can be a fingerprint-hiding coating exhibiting a water contact angle from 90° to 120°, an oleic acid contact angle of 40° or less, and a coefficient of friction of 0.25 or less. When a simulated fingerprint is applied to the surface-modifying layer in a Simulated Fingerprint Test, the surface-modifying layer exhibits a mean gray level of 150 or less and/or a haze of 8% or less. Methods of forming the coated article can include reacting an alkyl silane including at least two reactive groups to form the surface-modifying layer.
C09D 5/00 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, caractérisées par leur nature physique ou par les effets produitsApprêts en pâte
C09D 183/10 - Copolymères séquencés ou greffés contenant des séquences de polysiloxanes
51.
METHOD FOR PELLETIZING CHALCOGENIDE GLASS RODS TO MAKE UNIFORM FEEDSTOCK FOR INJECTION MOLDING
A system for pelletizing glass is disclosed. The system comprises a glass strand, a guide plate, a roller, a cutting wheel, and a protection feature. The glass strand has an elongate body. The guide plate defines a channel that extends between opposed first and second ends of the guide plate. The channel slidably supports the glass strand for advancement therethrough. The roller has a contact surface configured to continuously engage and advance the glass strand through the channel and out of the second end. The cutting wheel has teeth configured to pass adjacent the channel at the second end and cut the glass strand into pellets when the glass strand is advanced out of the second end. The protection feature is configured to protect the glass strand and the pellets from defects when the glass strand is advanced through the channel and cut into the pellets.
C03B 1/02 - Compactage des charges vitrifiables, p. ex. granulation
C03C 3/32 - Compositions de verre ne contenant pas d'oxyde, p. ex. halogénures, sulfures ou nitrures de germanium, de sélénium ou de tellure, binaires ou ternaires
C03C 13/04 - Fibres optiques, p. ex. compositions pour le cœur et la gaine de fibres
Building glass; Window glass for building; Insulating glass for building; Insulating glass for windows for building purposes; Laminated flat glass for building; Safety glass for building purposes
53.
SEPARATION APPARATUS AND METHODS FOR SEPARATING A GREEN TAPE FROM A CARRIER
A method of separating a green ceramic tape (123) from a carrier (113) includes: i) conveying an assembly (125) of the green tape disposed on the carrier in a conveyance direction (143) with a first applied tension; ii) conveying the assembly (125) along a peeler plate (161) with the carrier facing a first surface (163) of the peeler plate; and iii) separating the green tape (123) and the carrier (113) at an edge (167) of the peeler plate (161) to form a separated green tape (127) and a separated carrier (126). The separated green tape (127) then travels in substantially the conveyance direction (147) while the separated carrier (126) is conveyed away from the edge (167) in a carrier direction (145) with a second applied tension that is greater than the first applied tension. A separation apparatus is also claimed, comprising a peeler plate (161) with an edge (167) between a first side (163) and a second side (165), configured to separate the carrier (113) from the green tape (123).
B28B 11/24 - Appareillages ou procédés pour le traitement ou le travail des objets façonnés pour faire prendre ou durcir
B28B 1/30 - Fabrication d'objets façonnés à partir du matériau en appliquant le matériau sur un noyau ou une autre surface de moulage pour former une couche sur celle-ci
B28B 15/00 - Disposition générale ou agencement des installations
C04B 35/622 - Procédés de mise en formeTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques
C04B 35/01 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes
B28B 3/12 - Fabrication d'objets façonnés en utilisant des pressesPresses spécialement adaptées à ce travail dans laquelle un ou plusieurs cylindres exercent une pression sur le matériau
B28B 3/20 - Fabrication d'objets façonnés en utilisant des pressesPresses spécialement adaptées à ce travail dans laquelle le matériau est extrudé
B28B 1/29 - Fabrication d'objets façonnés à partir du matériau par profilage ou troussage du matériau dans des moules ouverts ou sur des surfaces de moulage
A bioprocess vessel for engineering, activating and expanding T-cells and a method of using such bioprocess vessel is provided. The bioprocess includes a vessel body, a retractable impeller assembly, and an adjustment knob structure. The configuration of the bioprocess vessel solves the problem of T-cell activation in spinner flasks, reducing the time, cost, and contamination risks associated with current spinner flask technologies.
Filtration articles having a honeycomb filter body with a honeycomb structure of a plurality of axial porous walls defining a plurality of cells comprising a plurality of axial channels in an axial direction, and filtration material deposits disposed within the honeycomb filter body comprised of agglomerates of primary particles, wherein the primary particles having an average particle size of 300 nm or less, and wherein the primary particles have a BET surface area of 17 m2/g or less. 41. The filtration article may have a layer structure disposed on the porous walls comprised of dangling agglomerates or dangling agglomerate chains which are attached to both the walls and other individual agglomerates and/or agglomerate chains. Also, methods for treating a plugged honeycomb filter body comprising filtration depositing of agglomerates comprised of primary particles which are nanoparticles having a BET surface area of 17 m2/g or less, such as primary particles having an average particle size of 300 nm or less, which may be spheroidal.
B01D 46/24 - Séparateurs de particules utilisant des corps filtrants creux et rigides, p. ex. appareils de précipitation de poussières
C04B 38/00 - Mortiers, béton, pierre artificielle ou articles de céramiques poreuxLeur préparation
F01N 3/022 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour refroidir ou pour enlever les constituants solides des gaz d'échappement au moyen de filtres caractérisés par une structure filtrante spécialement adaptée, p. ex. en nid d'abeilles, à mailles ou fibreuse
Glass-ceramic articles include a primary ceramic phase and an article thickness defined between a first major surface and a second major surface. Glass-ceramic articles include a plurality of features within an interior of the glass-ceramic article. The plurality of features include an amorphous glass phase. Methods of forming the plurality of features in the glass-ceramic article include emitting a burst of pulses from a laser that impinge the glass-ceramic article to form the plurality of features. In aspects, the burst of pulses melts a portion of a primary ceramic phase to form a feature comprising an amorphous glass phase within an interior of the glass-ceramic article.
C03C 3/097 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant du phosphore, du niobium ou du tantale
C03C 10/00 - Verre dévitrifié ou vitrocéramiques, c.-à-d. verre ou céramiques ayant une phase cristalline dispersée dans la phase vitreuse et constituant au moins 50% en poids de la composition
57.
PACKED BED REACTORS FOR ENGINEERED T-CELL PRODUCTION
A bioreactor and bioreactor system for mass production of engineered T-cells is provided. The bioreactor has a matrix comprising either a single type of mesh or more types of mesh, and may be packed in the bioreactor in a stacked or rolled configuration. The bioreactor allows for the binding, activation, and transduction of patient-derived T-cells, and then expansion of the resultant engineered T-cells, all in a single bioreactor. The bioreactor system includes the bioreactor and further has a cell culture conditioning vessel having conditioned cell culture media and may further comprise a cell culture media feed vessel having fresh cell culture media. The configuration of the bioreactor and the bioreactor system solves the problem of efficient large-scale and commercial production of engineered T-cells, reducing the time, cost, and contamination risks associated with current engineered T-cell production technologies.
C12M 1/12 - Appareillage pour l'enzymologie ou la microbiologie avec des moyens de stérilisation, filtration ou dialyse
C12M 1/42 - Appareils pour le traitement de micro-organismes ou d'enzymes au moyen d'énergie électrique ou ondulatoire, p. ex. magnétisme, ondes sonores
C12N 5/0783 - Cellules TCellules NKProgéniteurs de cellules T ou NK
The disclosure relates to a new cassette logistics system comprising a conveyor to transfer a cassette and a cleaning and measuring station. The conveyor is configured to moves the cassette in a first direction. The cleaning and measuring station is positioned at a location along the conveyor such that the cassette is received at the cleaning and measurement station when the cassette has moved a predetermined distance in the first direction. The cleaning and measuring station has both a cleaning port and a measurement port. The cleaning port is configured to removed debris on surfaces of the cassette and the measurement port is configured to measure contents of the cassette after the debris has been removed.
A method for metallizing through-glass vias in a glass substrate includes a) cleaning a glass substrate, wherein the glass substrate having an A side surface and a B side surface opposite the A side surface and separated from the A side surface by a thickness t, and a plurality of vias extending through the glass substrate from A side surface to the B side surface; b) depositing of an adhesion layer onto both the A side surface and B side surface of the glass substrate; c) laminating of a first dry film resist (DFR) onto the adhesion layer on the A side surface and a second DFR onto the adhesion layer on the B side surface of the glass substrate; d) making a pattern on the second DFR on the B side surface, and removing the second DFR elsewhere on the B side surface; e) etching the adhesion layer on the B side surface everywhere except underneath the pattern of the second DFR on B side surface; f) removing the pattern of the second DFR from B side surface so as to expose the vias; g) applying a current to the A side surface so as to reduce copper ions into copper and maintaining the B side surface vias electrically isolated.
H01L 21/48 - Fabrication ou traitement de parties, p. ex. de conteneurs, avant l'assemblage des dispositifs, en utilisant des procédés non couverts par l'un uniquement des groupes ou
An uncoupled multicore optical fiber may include: a common cladding having a refractive index ΔCC and an outer diameter ranging from about 120 μm to about 130 μm; and a plurality of core portions disposed within the common cladding. At least one core portion may include: a central axis; an alkali doped core region extending from the central axis and having a relative refractive index Δ1; a trench region encircling the core region and having a relative refractive index Δ3, wherein Δ1>ΔCC>Δ3; an attenuation less than 0.165 dB/km at 1550 nm; an effective area ranging from about 75 μm2 to about 135 μm2 at 1550 nm; and a cable cutoff wavelength less than or equal to 1530 nm. The common cladding may directly contact the trench region. A counter-propagating crosstalk at 1550 nm between two adjacent core portions may be less than or equal to −40 dB/100 km.
Embodiments include a multicore optical fiber including: a common cladding having a refractive index ΔCC and an outer radius of 70 μm to 95 μm; a coating having an outer radius of 120 μm to 127.5 μm; and a plurality of core portions; wherein at least one core portion comprises: an alkali-doped core region having a relative refractive index Δ1 and a trench region having a relative refractive index Δ3, wherein Δ1>ΔCC>Δ3; an attenuation less than 0.165 dB/km, and an effective area of 75 μm2 to 135 μm2 at a wavelength of 1550 nm; and a cable cutoff wavelength less than or equal to 1530 nm; wherein the multicore optical fiber has a core multiplicity factor of 0.028 to 0.045; and wherein a counter-propagating crosstalk at 1550 nm between adjacent core portions is less than −40 dB per 100 km.
A method of drawing an optical fiber may include directing an optical fiber comprising an alkali dopant through an inlet of a slow cooling device to a first zone within the slow cooling device and cooling the optical fiber in the first zone, wherein a first residence time t1 of the optical fiber in the first zone may be greater than or equal to 0.03 sec. The method may further include directing the optical fiber from the first zone to a second zone within the slow cooling device and cooling the optical fiber in the second zone, wherein a second residence time t2 in the second zone may be greater than the first residence time t1. A Rayleigh scattering coefficient of the optical fiber drawn may be less than 0.75 dB/km*micron4, and an attenuation of the optical fiber drawn may be less than 0.16 dB/km at 1550 nm.
SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
Badding, Michael Edward
Huang, Huayan
Jin, Jun
Lu, Yan
Song, Zhen
Wen, Zhaoyin
Xiu, Tongping
Zheng, Chujun
Abrégé
The disclosure relates to a solid electrolyte with a modified layer comprises: a solid electrolyte and a modified layer coated on the solid electrolyte. The solid electrolyte and the modified layer are connected by hydrogen bonds. The modified layer comprises an acid-treated carbon matrix and silver nanoparticles modified thereon. A method for preparing a solid electrolyte with a modified layer comprises: treating a carbon matrix with an acid, modifying silver nanoparticles on the acid-treated carbon matrix to obtain the silver nanoparticles modified on the acid-treated carbon matrix (Ag NPs@CNTs), mixing the Ag NPs@CNTs in suspension and coating them on a solid electrolyte, and drying and annealing the solid electrolyte to obtain the solid electrolyte with a modified layer.
A method of forming a glass article includes positioning a first glass substrate and a second glass substrate with a first interface surface of the first glass substrate facing a second interface surface of the second glass substrate to produce a glass article precursor, and heating the glass article precursor in a sealing environment to stack seal the first glass substrate to the second glass substrate to form the glass article. Subsequent to the heating, the second interface surface and the first interface surface are in direct contact with one another, establishing an interface between the first glass substrate and the second glass substrate.
A method of making a glass-ceramic article having a textured region is provided. The method comprises: (1) acid rinsing a glass-ceramic substrate in a rinsing solution comprising HF, and optionally HCl, to form a rinsed region; (2) etching the rinsed region in an etching solution comprising HF and NH4F, and optionally KCl, NaCl, MgCl2, propylene glycol and mixtures thereof; to form an etched region; and (3) chemically polishing the etched region in a polishing solution comprising HF, and optionally HCl, HNO3 and mixtures thereof, to form the textured region. Related glass-ceramic articles are also provided.
C03C 10/00 - Verre dévitrifié ou vitrocéramiques, c.-à-d. verre ou céramiques ayant une phase cristalline dispersée dans la phase vitreuse et constituant au moins 50% en poids de la composition
C03C 15/00 - Traitement de surface du verre, autre que sous forme de fibres ou de filaments, par attaque chimique
C03C 23/00 - Autres traitements de surface du verre, autre que sous forme de fibres ou de filaments
66.
OPTICAL FIBER FANOUT AND METHODS OF MAKING THE SAME
Optical fiber fanouts include a body that tapers from a first dimension to a smaller second dimension. The body includes a plurality of optical fibers within an interior region of the body that is collectively surrounded by a bulk of the body. The plurality of optical fibers extend for a length of the body. A maximum dimension of an optical fiber of the plurality of optical fibers tapers from the first end to the second end. The bulk of the body does not extend into the interior region. Methods include inserting the plurality of optical fibers and optionally one or more spacers in a single hold in a glass cane. Methods include drawing the glass cane to form a taper in a center region of the glass cane to form a necked cane with the plurality of optical fibers positioned therein that is then divided in two.
Various embodiments of the disclosure are directed towards fenestration assemblies having a first pane; a second pane, the second pane spaced from the first pane; and a third pane configured in spaced relation between the first pane and the second pane, where the third pane is a laminate. In one aspect, the total thickness of the third pane laminate is not greater than 3 mm. In one aspect, the laminate comprises a first glass layer not greater than 1 mm thick and a second glass layer not greater than 1 mm thick, and an interlayer between first and second layers.
B32B 7/05 - Liaison entre couches les couches n’étant pas liées sur toute la surface, p. ex. liaison discontinue ou par motifs particuliers
B32B 3/08 - Caractérisés par des caractéristiques de forme en des endroits déterminés, p. ex. au voisinage des bords caractérisés par des éléments ajoutés à des endroits déterminés
B32B 17/10 - Produits stratifiés composés essentiellement d'une feuille de verre ou de fibres de verre, de scorie ou d'une substance similaire comprenant du verre comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique de résine synthétique
B32B 27/00 - Produits stratifiés composés essentiellement de résine synthétique
E06B 3/67 - Blocs comprenant plusieurs panneaux de verre ou analogues qui sont espacés et fixés les uns aux autres de façon permanente, p. ex. le long des bords caractérisés par des aménagements ou des dispositifs additionnels pour l'isolation thermique ou acoustique
An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
Produits et services
Cell growth media for growing cells for scientific and research use; Cell growth media for growing cells for scientific use; Culture media for cultivating human mesenchymal stem/stromal cells (hMSCs), other than for medical or veterinary use
71.
ERROR RESISTANT PHOTOMASK MEASUREMENT TECHNIQUES FOR DIFFERENT SUPPORT POSITIONS
A method of determining a flatness of a substrate, the method including measuring a first flatness measurement of the substrate at a first orientation and a first tilt angle, measuring a second flatness measurement of the substrate at the first orientation and a second tilt angle different from the first tilt angle, generating a difference measurement between the first flatness measurement and the second flatness measurement, fitting the difference measurement to an orthogonal polynomial, generating an estimation of error based at least in part on using a scale factor and the difference measurement, the scale factor based on extracting orthogonal factors associated with the orthogonal polynomial, and generating a true flatness of the substrate by removing the estimation of error from the first flatness measurement.
G01B 11/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la rugosité ou l'irrégularité des surfaces
Disclosed herein are embodiments of a method of laminating component layers of a solid-state battery. In the method, two or more component layers of a solid-state battery are advanced in a first direction. The two or more component layers include at least one of a continuous ribbon substrate or a carrier film. The two or more component layers are pressed between a first pressing chamber and a second pressing chamber to laminate the two or more component layers of the solid-state battery. The first pressing chamber is configured to apply a first pressure uniformly over a first surface area, and the second pressing chamber is configured to apply a second pressure uniformly over a second surface area. The first pressure is substantially equal to the second pressure, and the first surface area is substantially equal to the second surface area.
The liquid-assisted micromachining methods include methods of processing a substrate made of a transparent dielectric material. A working surface of the substrate is placed in contact with a liquid-assist medium. A pulsed laser beam is generated and separated into a plurality of beamlets that are formed into a plurality of focus spots that have a fluence to induce multiphoton absorption in the transparent dielectric material. The plurality of focus spots are moved from an initial position in the liquid-assist medium through the substrate and simultaneously moved in one or more directions perpendicular to an optical axis so that each of the plurality of focus spots independently modifies the material along a separate modification path in a continuous volume of the transparent dielectric material. The continuous volume is removed from the substrate to form a feature in the substrate. Optical components formed using the processed substrate are also disclosed.
B23K 26/067 - Division du faisceau en faisceaux multiples, p. ex. foyers multiples
C03C 23/00 - Autres traitements de surface du verre, autre que sous forme de fibres ou de filaments
G02B 26/08 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander la direction de la lumière
G02B 27/12 - Systèmes divisant ou combinant des faisceaux fonctionnant uniquement par réfraction
74.
ANTI-SPARKLE SUBSTRATES AND METHODS OF MAKING THE SAME
Anti-sparkle substrates include a first major surface with a textured surface having a surface roughness Ra from 0.03 micrometers to 0.09 micrometers. The anti-sparkle substrate is a glass-based substrate or a ceramic-based substrate. The anti-sparkle substrate can exhibit a haze from 3% to 40% and a sparkle from 1% to 3.8%. Methods include chemically strengthening an existing first major surface, abrading the existing first major surface to form an intermediate first major surface, and etching the intermediate first major surface to form the first major surface of the anti-sparkle substrate.
A fiber optic ferrule having an angled endface is used in a system where the system can detect back reflection if there is an air gap but not if the fiber optic ferrule is physically mated to another optical device such as a fiber optic ferrule or transceiver. The angle of the end face is preferably between 3 and 5° and most preferably about 4° for most systems. No special detection equipment is needed to infer and determine an acceptable physical contact between two mated fiber-optic ferrules having the angled end faces.
A method for processing a silica-containing substrate may include submerging a silica-containing substrate and a counter electrode into a metal ion-containing solution. The silica-containing substrate may include a first surface and a second surface opposite the first surface. The silica-containing substrate may include at least one via that spans from the first surface to the second surface. The method may further include filling at least one via of the silica-containing substrate with a metal by an electroplating process. The electroplating process may include flowing a first current between the first surface and the counter electrode, and flowing a second current between the second surface and the counter electrode. The first current may include a first pulse waveform. The second current may include a second pulse waveform. The first pulse waveform may be different than the second pulse waveform. The entirety of the via may be filled with conductive metal while the first current and the second current are flowed.
Optical elements, optical coatings, and methods of making the same are described herein. In some embodiments, an optical element may include a substrate and a coating. The coating may include a first major surface and a second major surface opposite the first major surface, and the first major surface of the coating may be in direct contact with the substrate. The coating may further include a layer of zinc chalcogenide atop the substrate and a layer of Au atop the layer of zinc chalcogenide. In some embodiments, the coating may further include another layer of zinc chalcogenide atop the layer of Au.
B01D 53/02 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse
B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
Methods for forming a through-glass vias in glass-based substrates include irradiating a glass-based substrate with a laser beam to form a damage track extending from a first major surface to a second major surface of the glass-based substrate, and contacting the glass-based substrate with a first etchant, including a base, to form a preliminary through-glass via. The method includes contacting the glass-based substrate with a second etchant, including an acid. The contacting with the second etchant widens a first cross-sectional area of the preliminary through-glass via at the first major surface of the glass-based substrate and widens a second cross-sectional area of the preliminary through-glass via at the second major surface of the glass-based substrate.
C03C 3/083 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant de l'oxyde d'aluminium ou un composé du fer
C03C 15/00 - Traitement de surface du verre, autre que sous forme de fibres ou de filaments, par attaque chimique
80.
GLASS MELTING FURNACES AND VESSELS WITH IMPROVED THERMAL PERFORMANCE
Glass melting furnaces include a melting vessel that includes a floor, a feeding mechanism configured to feed raw materials into the melting vessel, a heating mechanism configured to convert raw materials fed into the melting vessel into molten glass, and a cooling mechanism extending within the floor and configured to flow a cooling fluid therethrough.
A method of manufacturing a strengthened glass article comprises soaking a glass article in a bath comprising molten salt. The molten salt comprises alkali metal ions. During the soaking, the alkali metal ions of the salt are exchanged for smaller alkali metal ions of glass of the glass article and impart a compressive stress in the glass article in an ion-exchanged portion thereof at or near a surface thereof. The glass of the glass article has a strain point temperature of at least 625° C., corresponding to glass viscosity of 1014.68 poise. The temperature of the bath is at least 70° C. below the strain point temperature of the glass of the glass article.
A method of determining a flatness of a substrate, the method including measuring a first flatness measurement of the substrate at a first orientation relative to a vertical direction, measuring a second flatness measurement of the substrate at a second orientation relative to the vertical direction, measuring a third flatness measurement of the substrate at a third orientation relative to a vertical direction, and measuring a fourth flatness measurement of the substrate at a fourth orientation relative to a vertical direction, each of the first orientation, the second orientation, the third orientation, and the fourth orientation being at a different orientation relative to the vertical direction. The method further including generating a first set of differences, fitting the first set of differences to respective orthogonal polynomials, and generating a true flatness of the substrate.
G01B 11/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la rugosité ou l'irrégularité des surfaces
G03F 7/00 - Production par voie photomécanique, p. ex. photolithographique, de surfaces texturées, p. ex. surfaces impriméesMatériaux à cet effet, p. ex. comportant des photoréservesAppareillages spécialement adaptés à cet effet
Embodiments of a deadfront configured to hide a display when the display is not active are provided. The deadfront includes a substrate having a first major surface and a second major surface. The second major surface is opposite the first major surface. The deadfront also includes a neutral density filter disposed on the second major surface of the transparent substrate and an ink layer disposed on the neutral density filter. The deadfront defines at least one display region in which the deadfront transmits at least 60% of incident light and at least one non-display region in which the deadfront transmits at most 5% of incident light. A contrast sensitivity between each of the at least one display region and each of the at least one non-display region is at least 15 when the display is not active.
Curved reformed glass-based articles and methods of producing the same. The reformed glass-based articles can be produced by reforming an oversized preform glass-based sheet and cutting the oversized preform to produce a glass-based article comprising a reformed glass-based sheet comprising a curved shape comprising a maximum compressive strain (MCS) shape parameter of greater than or equal to 0.1% and a maximum rate of curvature of less than 0.5 m-1. The maximum rate of curvature is measured along a straight line perpendicular to a peripheral edge of the glass-based sheet and at any point between a first point at the peripheral edge and a second point located on the curved shape at a distance of from 50 mm to 100 mm from the first point.
A method of determining a flatness of a substrate, the method including measuring a first flatness measurement of the substrate at a first orientation relative to a vertical direction, measuring a second flatness measurement of the substrate at a second orientation relative to the vertical direction, measuring a third flatness measurement of the substrate at a third orientation relative to a vertical direction, and measuring a fourth flatness measurement of the substrate at a fourth orientation relative to a vertical direction, each of the first orientation, the second orientation, the third orientation, and the fourth orientation being at a different orientation relative to the vertical direction. The method further including generating a first set of differences, fitting the first set of differences to respective orthogonal polynomials, and generating a true flatness of the substrate.
G01B 11/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la rugosité ou l'irrégularité des surfaces
G01B 11/24 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des contours ou des courbes
G03F 7/00 - Production par voie photomécanique, p. ex. photolithographique, de surfaces texturées, p. ex. surfaces impriméesMatériaux à cet effet, p. ex. comportant des photoréservesAppareillages spécialement adaptés à cet effet
86.
ERROR RESISTANT PHOTOMASK MEASUREMENT TECHNIQUES FOR DIFFERENT SUPPORT POSITIONS
A method of determining a flatness of a substrate, the method including measuring a first flatness measurement of the substrate at a first orientation and a first tilt angle, measuring a second flatness measurement of the substrate at the first orientation and a second tilt angle different from the first tilt angle, generating a difference measurement between the first flatness measurement and the second flatness measurement, fitting the difference measurement to an orthogonal polynomial, generating an estimation of error based at least in part on using a scale factor and the difference measurement, the scale factor based on extracting orthogonal factors associated with the orthogonal polynomial, and generating a true flatness of the substrate by removing the estimation of error from the first flatness measurement.
G01B 11/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la rugosité ou l'irrégularité des surfaces
G03F 7/00 - Production par voie photomécanique, p. ex. photolithographique, de surfaces texturées, p. ex. surfaces impriméesMatériaux à cet effet, p. ex. comportant des photoréservesAppareillages spécialement adaptés à cet effet
G01B 5/00 - Dispositions pour la mesure caractérisées par l'utilisation de techniques mécaniques
G01B 11/24 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des contours ou des courbes
The present disclosure concerns cell culture vessels and methods of the use thereof that are capable of providing a laminar flow of cell media to cells therein. The cell culture vessel include a plurality of wells within which cells reside as media moves across the top thereof. The cell culture systems are further enclosed to maintain sterility. The media can be constantly refreshing within the cell culture vessel, be recycled within the cell culture vessel, or a combination of both. The circulation of media about the cells residing therein can be particularly useful for 3D tissue culturing, such as producing spheroids or organoids.
Disclosed herein are embodiments of a method in which a green body is pressed to decrease a porosity of the green body. The green body includes particles of lithium garnet. The green body is fired in a furnace. The furnace increases in temperature from a first temperature to a second temperature during firing, and the green body sinters at the second temperature to form a sintered lithium garnet. The green body shrinks 35% or less along one dimension after firing to form the sintered lithium garnet.
Methods of manufacturing a ribbon include contacting the ribbon with a recess of a forming roll to impart a protrusion to a first major surface of the ribbon. Methods include receiving the ribbon on a support surface positioned downstream from the forming roll. A second major surface of the ribbon is opposite the first major surface and faces the support surface. The protrusion extends in a direction away from the support surface. Methods include forming a vacuum between the second major surface of the ribbon and the support surface to bias the ribbon toward the support surface.
Methods of forming a foldable apparatus can involve contacting an existing first major surface of a foldable substrate with an alkaline solution to remove an outer layer to form a new first major surface. In aspects, the alkaline solution comprises about 10 weight % or more of a hydroxide-containing base and/or a pH of about 14 or more. Methods of forming a foldable apparatus can comprise contacting a first major surface of a foldable substrate with a first alkaline detergent solution under sonication. Methods of forming a foldable apparatus can comprise contacting an existing first major surface of a foldable substrate with an acidic solution having a pH from about 3.3 to about 3.5 and a fluorine-containing compound. Methods of forming a foldable apparatus can comprise contacting an existing first major surface of a foldable substrate with a solution comprising fluorosilicic acid.
Disclosed herein is a system for handling green ceramic monoliths that includes a lifting apparatus including a body and at least two support prongs that extend from the body, the at least two support prongs configured to support a green ceramic monolith thereon. The system also includes a support tray that receives the green ceramic monolith from the lifting apparatus and includes a base, a plurality of ridges, and a plurality of grooves, wherein each of the plurality of grooves is spaced apart from an adjacent groove by one of the plurality of ridges. The system further includes an actuator coupled to the lifting apparatus, wherein the actuator is operable to manipulate the lifting apparatus to engage the support tray and thereby transfer support of the green ceramic monolith from the at least two support prongs of the lifting apparatus to the plurality of ridges.
B65G 47/24 - Dispositifs pour influencer la position relative ou l'orientation des objets pendant le transport par transporteurs présentant les objets selon un orientement donné
A communication device and method of forming the device are described. The device includes a mm Wave antenna on a substrate and glass cover protecting the substrate. A metasurface having a periodic set of unit cells is disposed on a surface of the substrate. A filter disposed between the unit cells has a sub-6 GHz passband. The metasurface has a structure that is designed to mitigate deleterious effects caused by the presence of the glass cover in close proximity to the mm Wave antenna.
A fiber optic connector includes a connector body, a release member attached to the connector body and having a boot latch opening at a rear end, a push-pull boot attached to the release member, and a boot latch attached to the push-pull boot and extending forward and away from the push-pull boot, the boot latch having a first and second side extension and a central head member connected to and at least partially disposed between the first and the second side extensions by at least one flexure member, the boot latch is permanently disposed within the release member after the boot latch is inserted into the boot latch opening as the central head member engages each of the first side extension and the second side extension preventing removal of the boot latch from the release member when push or pull forces are applied to the push-pull boot.
22322222. The glass composition can exhibit a 50% transmission percentage at an ultraviolet wavelength (UV) in the range of 320 nm to 350 nm at a thickness of 50 μm and/or a coefficient of thermal expansion (CTE) from 69 to 75 x 10-7/°C, as measured from 100°C to 300°C.
C03C 3/087 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant de l'oxyde d'aluminium ou un composé du fer contenant un oxyde d'un métal divalent contenant de l'oxyde de calcium, p. ex. verre à vitre ordinaire ou verre pour récipients creux
C03C 3/095 - Compositions pour la fabrication du verre contenant de la silice avec 40 à 90% en poids de silice contenant des terres rares
C03C 4/08 - Compositions pour verres ayant des propriétés particulières pour verre absorbant sélectivement des radiations de longueurs d'ondes déterminées
Optical elements, optical coatings, and methods of making the same are described herein. In some embodiments, an optical element may include a substrate and a coating. The coating may include a first major surface and a second major surface opposite the first major surface, and the first major surface of the coating may be in direct contact with the substrate. The coating may further include a layer of zinc chalcogenide atop the substrate and a layer of Au atop the layer of zinc chalcogenide. In some embodiments, the coating may further include another layer of zinc chalcogenide atop the layer of Au.
A patterned substrate includes a substrate that includes a plurality of laser-ablated areas thereon arranged in the shape of a pattern. The laser-ablated areas each include a nanomaterial therein. Non-laser-ablated areas on the substrate have a lower concentration of the nanomaterial than the laser-ablated areas.
G02B 1/12 - Revêtements optiques obtenus par application sur les éléments optiques ou par traitement de la surface de ceux-ci par traitement de la surface, p. ex. par irradiation
G02B 27/12 - Systèmes divisant ou combinant des faisceaux fonctionnant uniquement par réfraction
A fiber to waveguide coupler is provided that includes an optical fiber having a core and a cladding. One end of the optical fiber is tapered and has a non-circular cross-section. The optical fiber defines a stripped portion to expose the at least one substantially flat surface of the fiber. A waveguide is configured to be evanescently coupled with the exposed at least one substantially flat surface of the fiber.
A method of forming a chalcogenide glass element, the method includes depositing molten chalcogenide glass from an injection tip of a nozzle and into a cavity of a mold at a flow rate, the nozzle being inserted into the cavity, and during the depositing, moving at least one of the nozzle and the cavity relative to each other to substantially fill the cavity with the molten chalcogenide glass, and changing the speed of the at least one of the nozzle and the cavity based upon alignment of the injection tip with a cross-sectional radius of the cavity.
Methods for forming a through-glass vias in glass-based substrates include irradiating a glass-based substrate with a laser beam to form a damage track extending from a first major surface to a second major surface of the glass-based substrate, and contacting the glass-based substrate with a first etchant, including a base, to form a preliminary through-glass via. The method includes contacting the glass-based substrate with a second etchant, including an acid. The contacting with the second etchant widens a first cross-sectional area of the preliminary through-glass via at the first major surface of the glass-based substrate and widens a second cross-sectional area of the preliminary through-glass via at the second major surface of the glass-based substrate.
Glass-ceramic containers and methods of making glass ceramic containers with high transparency and fracture toughness suitable for use as, for example a beverage or food container, such as for example, a baby bottle or personal hydration bottle. The glass ceramic containers may have an average wall thickness in the range of 1 mm to 2.5 mm and a fracture toughness of 1 MPa*m{circumflex over ( )}1/2 or more.
C03B 32/02 - Cristallisation thermique, p. ex. pour la cristallisation de produits vitreux en articles vitrocéramiques
C03C 4/18 - Compositions pour verres ayant des propriétés particulières pour verre sensible aux ions
C03C 10/00 - Verre dévitrifié ou vitrocéramiques, c.-à-d. verre ou céramiques ayant une phase cristalline dispersée dans la phase vitreuse et constituant au moins 50% en poids de la composition
C03C 21/00 - Traitement du verre, autre que sous forme de fibres ou de filaments, par diffusion d'ions ou de métaux en surface