A gas manifold includes a gas inlet surface having a first and second gas input port and a gas outlet surface. A first internal chamber is coupled to the first gas input port. A first plurality of gas conduits, each including an input coupled to the first internal chamber and an outlet at the gas outlet surface where a direction of at least one of the conduits in the first plurality of gas conduits relative to the gas outlet surface is different. A second internal chamber is coupled to the second gas input port and is isolated from the first internal chamber. A second plurality of gas conduits, each including an input coupled to the second internal chamber and an outlet at the gas outlet surface. A direction of at least one of the conduits in the second plurality of gas conduits relative to the gas outlet surface is different. Directions of at least some of the gas conduits in the first and second plurality of gas conduits relative to the gas outlet surface can be selected to provide a desired gas flow pattern proximate to the gas outlet surface.
C23C 16/455 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour introduire des gaz dans la chambre de réaction ou pour modifier les écoulements de gaz dans la chambre de réaction
C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement
C23C 16/54 - Appareillage spécialement adapté pour le revêtement en continu
A vacuum gauge protector for deposition systems includes a body comprising an input port that is configured to couple to a vacuum chamber, and an output port configured to couple to a vacuum gauge. A deposition material filter is positioned in the body to present a tortuous path to gases comprising deposition materials entering the body where the surface area of the deposition material filter is greater than 2000 mm2. In addition, the deposition material filter restricts deposition material from passing through the body to the output port so as to reduce vacuum gauge contamination while maintaining enough gas flow through the body to the output port so that the vacuum gauge response time can be less than 10 seconds.
C23C 16/455 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour introduire des gaz dans la chambre de réaction ou pour modifier les écoulements de gaz dans la chambre de réaction
C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement
3.
Microchannel plate devices with tunable resistive films
A microchannel plate includes a substrate defining a plurality of channels extending from a top surface of the substrate to a bottom surface of the substrate. A resistive layer is formed over an outer surface of the plurality of channels that provides ohmic conduction with a predetermined resistivity that is substantially constant. An emissive layer is formed over the resistive layer. A top electrode is positioned on the top surface of the substrate. A bottom electrode positioned on the bottom surface of the substrate.
A microchannel plate includes a substrate defining a plurality of channels extending from a top surface of the substrate to a bottom surface of the substrate. A resistive layer is formed over an outer surface of the plurality of channels that provides ohmic conduction with a predetermined resistivity that is substantially constant. An emissive layer is formed over the resistive layer. A top electrode is positioned on the top surface of the substrate. A bottom electrode positioned on the bottom surface of the substrate.
An image intensifying device includes a lens that is positioned at a light input that forms an image of a scene. The image intensifying device also includes an image intensifier tube that includes a photocathode that is positioned to receive the image formed by the lens. The photocathode generates photoelectrons in response to the light image of the scene. The image intensifier tube also includes a microchannel plate having an input surface comprising the photocathode. The microchannel plate receives the photoelectrons generated by the photocathode and generating secondary electrons. An electron detector receives the secondary electrons generated by the microchannel plate and generates an intensified image of the scene.
A method of fabricating a microchannel plate includes forming a plurality of pores in a silicon substrate. The plurality of pores is oxidized, thereby consuming silicon at surfaces of the plurality of pores and forming a silicon dioxide layer over the plurality of pores. At least a portion of the silicon dioxide layer is stripped, which reduces a surface roughness of the plurality of pores. A semiconducting layer can be deposited onto the surface of the silicon dioxide layer. The semiconducting layer is then oxidized, thereby consuming at least some of the polysilicon or amorphous silicon layer and forming an insulating layer. Resistive and secondary electron emissive layers are then deposited on the insulating layer by atomic layer deposition.
H01L 21/00 - Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de dispositifs à semi-conducteurs ou de dispositifs à l'état solide, ou bien de leurs parties constitutives
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
B31D 3/00 - Fabrication d'articles de structure alvéolaire, p. ex. de panneaux d'isolation
G02B 6/10 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques
C25D 5/48 - Post-traitement des surfaces revêtues de métaux par voie électrolytique
7.
Microchannel plate devices with tunable resistive films
A microchannel plate for detecting neutrons includes a hydrogen-rich polymer substrate that defines a plurality of channels extending from a top surface of the substrate to a bottom surface of the substrate, where neutrons interact with the plurality of channels to generate at least one secondary electron. A top electrode is positioned on the top surface of the substrate and a bottom electrode is positioned on the bottom surface of the substrate. A resistive layer is formed over an outer surface of the plurality of channels that provides ohmic conduction with a resistivity that is substantially constant. An emissive layer is formed over the resistive layer. Neutron interaction products interact with the plurality of channels defined by the substrate and the emissive films to generate secondary electrons that cascade within the plurality of channels to provide an amplified signal related to the detection of neutrons.
A microchannel plate includes a substrate defining a plurality of channels extending from a top surface of the substrate to a bottom surface of the substrate. A resistive layer is formed over an outer surface of the plurality of channels that provides ohmic conduction with a predetermined resistivity that is substantially constant. An emissive layer is formed over the resistive layer. A top electrode is positioned on the top surface of the substrate. A bottom electrode positioned on the bottom surface of the substrate.
An image intensifying device includes a lens that is positioned at a light input that forms an image of a scene. The image intensifying device also includes an image intensifier tube that includes a photocathode that is positioned to receive the image formed by the lens. The photocathode generates photoelectrons in response to the light image of the scene. The image intensifier tube also includes a microchannel plate having an input surface comprising the photocathode. The microchannel plate receives the photoelectrons generated by the photocathode and generating secondary electrons. An electron detector receives the secondary electrons generated by the microchannel plate and generates an intensified image of the scene.
A method of fabricating a microchannel plate includes defining a plurality of pores extending from a top surface of a substrate to a bottom surface of the substrate where the plurality of pores has a resistive material on an outer surface that forms a first emissive layer. A second emissive layer is formed over the first emissive layer. The second emissive layer is chosen to achieve at least one of an increase in secondary electron emission efficiency and a decrease in gain degradation as a function of time. A top electrode is formed on the top surface of the substrate and a bottom electrode is formed on the bottom surface of the substrate.
A microchannel plate includes a substrate defining a plurality of pores extending from a top surface of the substrate to a bottom surface of the substrate. The plurality of pores includes a resistive material on an outer surface that forms a first emissive layer. A second emissive layer is formed over the first emissive layer. The second emissive layer is chosen to achieve at least one of an increase in secondary electron emission efficiency and a decrease in gain degradation as a function of time. A top electrode is positioned on the top surface of the substrate and a bottom electrode is positioned on the bottom surface of the substrate.
40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Thin film deposition chemical processing services in the fields of engineered materials, micro-structures and process equipment and technology Scientific and technological research and design services in the fields of engineered materials, micro-structures and process equipment and technology
40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Thin film deposition chemical processing services in the fields of engineered materials, micro-structures and process equipment and technology Scientific and technological research and design services in the fields of engineered materials, micro-structures and process equipment and technology
14.
Microchannel amplifier with tailored pore resistance
A microchannel amplifier includes an insulating substrate that defines at least one microchannel pore through the substrate from an input surface to an output surface. A conductive layer is formed on an outer surface of the at least one microchannel pore that has a non-uniform resistance as a function of distance through the at least one microchannel pore. The non-uniform resistance is selected to simulate saturation by reducing gain as a function of input current and bias voltage compared with uniform resistance. A first and second electrode is deposited on a respective one of the input and the output surfaces of the insulating substrate. The microchannel amplifier amplifying emissions propagating through the at least one microchannel pore when the first and second electrodes are biased.